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Abstract 

Bioindicators are effective tools for evaluating ecosystem condition. Weight-length models 
are essential to using fish as bioindicators, providing expected weights for healthy fish of 
given lengths. The traditional model, W(L) = aLb, is widely used and fits many fish taxa but is 
error-prone and has undesirably large uncertainties.This study evaluated a proposed 
improvement, replacing ܽ with scaling parameter L1: W(L) = 1000(L/L1)b. The primary 
hypothesis was that the proposed model would have lower mean parameter uncertainties than 
the traditional model and smaller uncertainties in most data sets, yielding more accurate 
bioindicators. The models were compared for 160 data sets including 94 taxa containing 
14,102data points. Each set was fit to the traditional model and the proposed improvement 
with appropriate regression techniques. The improved model yielded lower uncertainties for 
L1 but similar uncertainties to the traditional model for b. Lower L1 uncertainties provide 
more sensitive bioindicators. The secondary hypothesis was supported: L1 shows promise as 
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a new bioindicator because its value increases when fish are stressed by suboptimal 
conditions including the Deepwater Horizon oil spill, oyster reef destruction, and 
overpopulation of invasive species. L1 is sensitive, accurate, and valuable in conjunction with 
condition factor to assess environmental well-being. 

Keywords: Bioindicators, Fish, Weight-length, Condition factor, Relative weight, Relative 
condition factor, Ecosystem condition 
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1. Introduction 

Bioindicators are biological features that can be measured and that tend to change with 
exposure to negative environmental factors. (Holt & Miller, 2011; Summers et al., 1997) Fish 
inhabit nearly every aquatic habitat and reflect their environment’s state of health from 
molecular to population levels. (Barbour et al., 1999; Sedeño-Diaz & López- López, 2012; 
Summers et al., 1997) Fish have been used as bioindicators for testing hazardous metal 
levels, assessing water quality and ecological risk by the Environmental Protection Agency, 
(Barbour et al., 1999) judging coral reef health, (Grimsditch, 2008) and evaluating damage 
from oil spills. (Courtney et al., 2011) Weight-length models provide expected weight 
equations, from which prey abundance, interspecies competition, general fish health, and 
reproductive potential can be assessed. (Blackwell et al., 2000) Expected weight equations 
also provide information for calculating condition factor, a commonly used bioindicator. The 
condition of fish in a population determines its potential to provide benefits for fisheries in 
addition to producing data key to preservation of ecosystems with healthy biodiversity. 
(Froese, 2006) 

There is much support for the traditional model for weight-length in fish: ܹሺܮሻ  ൌ  . Theܮܽ 
traditional model has been proven to be widely applicable, as weight-length data from most 
taxa of fish are fit well. (Gabelhouse, 1984) The exponent, b, is independent of system of 
units chosen and has a straightforward physical meaning. (Froese, 2006) In contrast, the 
coefficient, a, depends on the units chosen and the value of the exponent, and it lacks an 
obvious physical meaning. These factors may have led to errors in commonly accepted 
weight-length parameters in the oft-referenced online database FishBase.org (Cole-Fletcher et 
al., 2011) and numerous errors in the parameters listed in the Carlander Handbook of 
Freshwater Fishery Biology. (Carlander, 1969; Daviscourt et al., 2011) Both the linear 
least-squares (LLS) and non-linear least-squares (NLLS) fitting methods yield large 
uncertainties in the best-fit parameter a that results from regression, which results in expected 
weights with large uncertainties. 

The proposed improvement, ܹሺܮሻ ൌ 1000ሺ 
భ

ሻ, has several advantages over the traditional 
model. Best-fit parameters L1 and b are determined using the Levenberg-Marquardt 
non-linear least-squares (NLLS) technique. In contrast to the traditional coefficient a, L1 as a 
scaling parameter has a clear physical meaning and retains units that make sense independent 
of the exponent. L1 is the typical length of a fish whose weight equals the constant lead 
coefficient. For length measured in mm and weight in g, L1 is the typical length of a fish 
weighing 1000 g. This more meaningful parameter makes errant parameters easier to detect. 
(Dexter et al., 2011)  

1.1 Hypothesis 

The primary hypothesis was that the proposed model, ܹሺܮሻ ൌ 1000ሺ 
భ

ሻ, will provide 
significantly smaller relative uncertainties than the traditional model in L1 and b for both LLS 
and NLLS regression and therefore yield more accurate bioindicators. The secondary 
hypothesis was that L1 will be a useful new bioindicator of stress in systems known to be 
stressed.  

The proposed model was tested against the traditional model for 160 data sets, encompassing 
94 taxa containing 14,102 individual data points. For each data set, the length and weight of 
the fish were fit with the traditional model using LLS and NLLS regression and with the 
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proposed model using NLLS regression. Mean relative uncertainties and P values were then 
determined and compared for each parameter and method, as well as the number of times 
each method had the smallest uncertainty for each parameter. The best model was defined to 
be the one that had the lowest relative uncertainty for each parameter the majority of the time 
and the most frequently smallest uncertainty in each parameter. 

2. Materials and Methods 

The models were tested against 41 original data sets encompassing 20 fish taxa and 2,242 
samples. Data were gathered using voluntary creel surveys, asking sport anglers (and in one 
case a commercial fisherman) to weigh and measure fish from their ice chests, usually as they 
returned to a boat ramp or a fish cleaning station. Weights were measured to the nearest 0.01 
kg and lengths were measured to the nearest 3.2 mm (1/8 inch). Original data was 
supplemented by 61 data sets provided by the Colorado Department of Parks and Wildlife 
(CDPW) containing 17 taxa and 10,033 samples. The remaining 58 data sets (1,827 data 
points) were extracted from Carlander’s Handbook of Freshwater Fishery Biology. 
(Carlander, 1969) These sets were selected to expand the number of taxa included, as well as 
to ensure the model’s applicability to atypically shaped taxa like lamprey and eels.  

To test the primary hypothesis, weight-length data were plotted for each data set using 
SciDAVis graphing software. First, the Levenberg-Marquardt non-linear least-squares 
algorithm was used to determine best fit parameters for both the traditional and the proposed 
model. Each model’s parameters and their respective uncertainties were recorded. Then, 
log-transformed weight-lengthdata was fit to the traditional model by LLS regression. The 
accuracy of the SciDAVis fitting routines was validated by comparison with two independent 
regression programs (Gnuplot v. 4.5 and Lsqrft v. 1.5). Validation on multiple data sets 
yielded identical parameter values, correlation coefficients, and parameter uncertainties when 
fitting the same data to the same model. 

After the fits were completed and resulting parameters recorded, a values from the NLLS and 
LLS fits for the traditional model were transformed to be equivalent to L1 for comparison 
purposes. For the NLLS fit to the traditional model, an L1 equivalent was determined by 
ଵܮ ൌ ሺଵ


ሻ

భ
್. The L1eq parameter was determined for the LLS fit to the traditional model in 

the same way after converting ܽௌ to an a equivalent by ܽ ൌ 10ಽಽೄ. The uncertainties 
of the ܽௌ, a, and b parameters were then converted to equivalent L1eq uncertainties via 
standard techniques of error propagation. (Ku, 1966) To convert ∆ܽ into ∆ܮଵ for the LLS 
traditional fit, ܽ ൌ 10ௌ was used again to convert ܽௌ into the equivalent of a. Then 
∆ܽ ൌ డ

డ
ሺ∆ܽሻ. From there the error was propagated from a to L1eq by 

ଵܮ∆ ൌ  డభ

ௗ
൫∆ܽ൯.  These equivalent L1 uncertainties were then used for the final 

comparisons.  

3. Results 

The primary hypothesis required the proposed model, ܹሺܮሻ ൌ 1000ሺ 
భ

ሻ , to provide 
significantly smaller relative uncertainties than the traditional model for both LLS and NLLS 
regression. To determine whether uncertainties were lowered, individual uncertainties were 
compared across all data sets as shown in Figures 1 and 2. For each data set, it was 
determined which fit provided the lowest relative uncertainty for each parameter. For the L1 
(or L1eq ) parameter, the proposed model had the lowest uncertainty for 139/160 cases (87%). 
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It is clear (as seen in Figure 1) that the proposed model truly reduced uncertainties in the 
majority of sets. 
 

 

Figure 1. Uncertainty in L1and L1 equivalent 

Notes: Uncertainty comparison graph demonstrates the relative uncertainties for L1 in the proposed model 
(green x), traditional LLS (purple circle), and traditional NLLS (blue square) fits. The NLLS fit to the proposed 
model clearly has the lowest uncertainties overall. The data sets are numbered for convenience of display and 
are in no particular order. 
 

The improved model’s uncertainty for the b parameter, though always within 1.6% of the 
traditional model’s uncertainty, was never lowest. The traditional LLS fit had the lowest b 
uncertainty for 121/160 cases (76%), as seen in Figure 2. 

This study’s secondary hypothesis dealt with the use of scaling parameter L1 as a new 
bioindicator. To support the hypothesis, L1 had to be sensitive to stress in environments 
previously known to be stressed. Generally, in places where fish are healthier, L1 is smaller; 
in places where conditions are poor, L1 is larger.  
 

 

Figure 2. Uncertainty in b. 

Notes: The b uncertainty comparison graph demonstrates the relative uncertainties for b in the proposed model 
(green x), traditional LLS (purple circle), and traditional NLLS (blue square) fits. Relative uncertainties of the 
three different methods are more comparable with each other for the parameter b than for the parameter L1 or L1 
equivalent. 
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One test of L1 as a bioindicator involved taking parameters published by Jenkins (2004) for 
Calcasieu Estuary, Louisiana, calculating an expected L1, and comparing it to L1 values from 
original data to assess ecosystem health over time. After many other areas were closed to 
oyster (Crassostrea virginica) harvesting after the Deepwater Horizon oil spill, the Calcasieu 
Estuary in southwest Louisiana was left open and experienced overharvesting. (Louisiana 
Oyster Stock Assessment Report, 2012) This depleted a direct food source for the black drum 
(Pogonias cromis), and also degraded valuable oyster reef habitat which is important for 
many crustaceans and benthos on which other species depend for food. Significantly 
increased L1 values from the expected values to 2012 values for all three species shown in 
Table 1 indicate a problem. The expected length of a 1000 g black drum was 411.5 mm, but 
in 2012 the typical 1000 g fish had a total length of 435.4 mm. Increased L1 values for all 
three species in the same estuary indicates a loss of body condition after the oyster reef 
destruction. Even though L1 was not used originally as a bioindicator to diagnose the issue, 
this analysis shows that L1 is sensitive to these environmental factors and also illustrates the 
benefits of the reduced uncertainties obtained with the proposed model.  

 

Table 1. L1 as a bioindicator of oyster reef damage 

  L1   Normal 
  (mm) Difference (%) Relative Distribution 
Red Drum Expected 458.2  Uncertainty (%) P value 
2011 Calcasieu 460.6 0.51% 0.85% 0.270 
2012 Calcasieu 468.0 2.14% 0.95% 0.014 
2013 Calcasieu 445.6 -2.77% 1.26% 0.988 
Black Drum Expected 411.5    
2011 Calcasieu 416.1 1.11% 0.85% 0.097 
2012 Calcasieu 435.4 5.79% 1.10% < 0.001 
2013 Calcasieu 425.6 3.41% 0.55% < 0.001 
Spotted Seatrout Expected 470.1    
2011 Calcasieu 477.5 1.58% 0.33% < 0.001 
2012 Calcasieu 481.6 2.44% 0.26% < 0.001 
2013 Calcasieu 468.4 -0.36% 0.29% 0.895 

Notes: Expected (from analysis of published data) statewide Louisiana L1 values as compared with L1 values in 
Calcasieu Estuary, Louisiana from original data. (Jenkins, 2004) A negative difference from expected L1 is a 
positive bioindicator, and a positive difference from expected L1 is a negative bioindicator. 
 
A second test of L1 as a bioindicator utilized a comparison of expected L1 values calculated 
from Jenkins (2004) with measured values in Louisiana’s Lafourche Parish one year after the 
Deepwater Horizon oil spill. As shown in Table 2, L1 is sensitive to the effects of the oil spill, 
showing a decrease in body condition for both red drum (Sciaenops ocellatus) and spotted 
seatrout (Cynoscion nebulosus). These two species spend time throughout the water column 
and are more sensitive to issues like the oil spill that impact the entire water column. Black 
drum is a benthic species, which means it spends time near the bottom and gathers food from 
the lower depths. Its condition did not worsen. It is likely that the heavier oil sank to the 
bottom before reaching Lafourche inshore waters, while the lighter oil remained, affecting 
only the upper water column and species therein. 
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Table 2. L1 as a bioindicator of Deepwater Horizon oil spill damage 

Lafourche Parish 2011    Normal 
 Expected Original  Relative Distribution 
 L1 (mm) L1 (mm) Difference (%) Uncertainty (%) P value 
Red Drum 458.2 467.2 1.95% 1.03% 0.031 
Black Drum 411.5 401.2 -2.50% 6.79% 0.647 
Spotted Seatrout 470.1 477.2 1.51% 0.39% < 0.001 

Notes: Expected L1 values from published Louisiana data as compared with L1 values from original data 
gathered in Lafourche Parish. 
 
L1 was also applied to various fishes in Blue Mesa Reservoir, Colorado as shown in Table 3. 
The values of L1 for brown trout (Salmo trutta), lake trout (Salvelinus namaycush), and 
rainbow trout (Oncorhynchus mykiss) were respectively 12.1%, 7.0%, and 6.8% longer than 
statewide L1 values (Colorado Department of Parks and Wildlife 2011 data). In contrast, the 
kokanee salmon (Oncorhynchus nerka) in Blue Mesa are plumper than typical in Colorado, 
with an L1 4% lower. Colorado scientists have documented the reason for the problem in 
Blue Mesa:  lake trout and brown trout are invasive species that became overpopulated and 
stressed their food sources. (Johnson and Pate, 2010) This also explains why the kokanee 
salmon are heavier and therefore healthier. The lake trout have depleted the numbers of 
kokanee salmon by eating them, so that the salmon are underpopulated; thus they have plenty 
to eat due to so little competition with other kokanees. L1 is sensitive to problems that can be 
documented in other ways, but it is simple and easy to apply, often to data sets that already 
exist. Because L1 is a sensitive bioindicator to known problems, it is likely to also be an early 
indicator of emerging problems. Additionally, because it has lower uncertainties than 
condition factor, L1 can yield statistically significant results with fewer samples than 
condition factor. 
 

Table 3. L1 as a bioindicator of invasive species effects  

      Normal 
 Expected Original  Mean  Distribution
 L1 (mm) L1 (mm) Difference (%) Uncertainty Location P value 
Kokanee Salmon 464.8 446.4 -4.12% 1.5% Blue Mesa 0.997 
Brown Trout 454.7 517.5 12.13% 1.6% Blue Mesa < 0.001 
Lake Trout 456.7 491.2 7.02% 0.7% Blue Mesa < 0.001 
Rainbow Trout 438 470.0 6.81% 2.4% Blue Mesa 0.002 

Notes: L1 equivalents calculated from CDPW expected weight equations compared to L1 as yielded by the 
original data. 
 

4. Discussion 

The primary hypothesis that the proposed model would have significantly lower uncertainties 
for both L1 and b was not fully supported. The fit to the proposed model did have the lowest 
mean uncertainties in L1 (mean L1 uncertainty 1.82%) as opposed to the NLLS traditional 
(mean L1 uncertainty 31.09%) and the LLS traditional (mean L1 uncertainty 4.74%) fits. As 
seen in Table 4, P values less than 0.001 from a two tailed T-test attest to the significance of 
these results. The LLS fit to the traditional model was most accurate for the b parameter. 
However, uncertainties in the b parameter only averaged 1.3 times bigger when using the 
proposed NLLS and the difference between proposed and traditional b uncertainties was 
never more than 1.6%. This carries several implications when applying the results. 
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Table 4. Significance testing of primary hypothesis 

Two Tailed  T-Test     
Two-Sampled Unequal Variance     
  Mean  Mean  
Model A Parameter Uncertainty Model B Uncertainty P value 
Proposed L1 1.82% Traditional NLLS 31.09% <0.001 
Proposed L1 1.82% Traditional LLS 4.74% <0.001 
Proposed b 5.05% Traditional NLLS 4.95% 0.832 
Proposed b 5.05% Traditional LLS 3.65% 0.999 

Notes: L1 and b mean uncertainties over 160 data sets for the proposed model vs. the traditional model. P values 
of < 0.001 for L1 demonstrate that L1 is significantly more accurate in the proposed model. P values for b are 
larger because the proposed model did not reduce uncertainty in b. 
 

The LLS traditional fit is probably the best choice if a research question needs to minimize 
uncertainty in b. If reasonably small errors are needed in both, then the proposed model is the 
better choice, since equivalent uncertainties in the LLS parameters are three times bigger. If 
the research question needs to minimize the uncertainty in L1 or a, then the proposed model is 
the best choice.  

Because L1 has a physical meaning that is easily understood, a study of its distributions is 
more meaningful than a study of the distributions of the a parameter. Fish with a smaller L1 
like the black crappie (Pomoxis nigromaculatus, 358.62 mm) have higher (and near constant) 
ratios of width and girth to length than fish with a higher L1 such as northern pike (Esox 
lucius, 554 mm) and chain pickerel (Esox niger, 534 mm), which tend to be long and 
torpedo-shaped. At the end of this extreme lie the American eel (Anguilla rostrata, 827 mm) 
and the western brook lamprey (Lampetra richardsoni, 784 mm). The clear and easy to 
interpret physical meaning of L1 is useful for identifying fish body type and for catching 
errors when one already knows the body type of a certain species. 

When considering the calculation of weight-length parameters, the usefulness of L1 for 
catching errors is illustrated by considering erroneous parameters identified in other studies 
from the commonly used FishBase.org. (Cole-Fletcher et al., 2011) These erroneous 
parameters resulted from a fit to the traditional model, and errors were not recognized using 
an error detection method by plotting ݈݃ ܽ vs. b. In many species, the maximum and 
minimum curves produced with the given weight-length parameters predict weights that are 
clearly absurd. FishBase.org and Froese (2006) advocate using outlier detection to check for 
parameter errors. Evaluation of L1 may offer a more straightforward alternative. For example, 
the given parameters at FishBase.org for the Black Crappie are a = 0.0195 and b = 3.081, 
yielding an L1eq of 33.78 mm for a 1000 g fish. (Froese & Pauly, 2010) The original data 
yielded an L1 of 358.62 mm for Black Crappie. Clearly this is a case where the calculation of 
L1 as a check on the parameters would have revealed a sizable error.  

Since the proposed model has significantly lower uncertainties for L1, it will yield more 
accurate condition indices for use as bioindicators. The accuracy of bioindicators is crucial, 
as they have been proven useful in evaluating varying environmental issues. The 
Environmental Protection Agency in the USA has been using fish as bioindicators of water 
quality in streams and rivers, even going so far as to develop rapid bioassessment protocols in 
case of emergency. (Barbour et al., 1999) Fish condition as a bioindicator was also key to 
assessing ecosystem health in the Gulf of Mexico one year after the Deepwater Horizon oil 
spill and demonstrating a negative impact on the condition of several fish species. (Courtney 
et al., 2011) In addition, fish bioindicators have been employed to monitor mercury levels, 
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forage abundance, and coral reef health. (Authman, 2008; Grimsditch, 2008; Ighwela et al., 
2011) Improving the accuracy of the L1 and therefore condition indices for use as 
bioindicators has many applications valuable for preservation and management. 

5. Conclusion 

The primary hypothesis was that the proposed improved model, ܹሺܮሻ ൌ 1000ሺ 
భ

ሻ, would 
have smaller parameter uncertainties than the traditional model and smaller uncertainties in 
most data sets. While uncertainties for L1 in the improved model were significantly lower 
than the equivalent uncertainties for the traditional model, uncertainties for b were not 
improved but comparable. The improved model is more accurate if a study is focusing on the 
L1 parameter, which improves evaluations of expected weights, condition indices, and fish 
population health.  

Fish health accurately reflects an aquatic ecosystem’s condition. (Barbour et al., 1999; 
Sedeño-Diaz & López- López, 2012; Summers et al., 1997) Evaluation of the proposed 
model demonstrated that it will be useful for improving the accuracy of accepted 
bioindicators like condition index. This is important for increasing certainty about the health 
of ecosystems. Improved accuracy in assessing weight-length data and condition indices will 
facilitate improved monitoring and detection of problems in aquatic ecosystems. Higher 
accuracy also allows for earlier recognition of stress and higher sensitivity to emerging 
issues. 

With regards to the secondary hypothesis, L1 is an effective bioindicator with several 
advantages. Multiple test cases demonstrated that L1 is sensitive to environmental issues 
previously highlighted by the use of bioindicators such as oyster reef damage, the Deepwater 
Horizon oil spill, and the damaging effects of invasive species. L1 can pinpoint a stressor 
(like the overharvesting of oysters) based on the varying reactions of fish with different 
feeding habits. Even if these phenomena could be revealed using current bioindicators, the 
reduced uncertainty of L1 allows detection of environmental problems with smaller sample 
sizes than other bioindicators, and use of L1 is a comparably more sensitive sentinel than 
existing methods. L1 is valuable for use in conjunction with condition factor for the improved 
assessment of ecosystem health.  
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