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Abstract 

The availability of geographically disaggregated data, especially referred to the urban and 
metropolitan areas, is a growing need not only for academic studies in the field of economics 
but also for policy makers. However, in many cases the degree of disaggregation of official 
statistics does not allow to have information at a desirable level. In this paper a methodology to 
approximate highly-disaggregated data for the Spanish economy using entropy econometrics is 
proposed. The paper illustrates how the procedure works taking as empirical application the 
estimation of income for the Spanish municipalities classified according to their size. An 
evaluation of the estimates is presented by a simulation exercise and by comparing our results 
with previous estimates obtained by statistical agencies using more information-intensive 
estimation techniques. Our results suggest that entropy estimators could be considered as an 
alternative for recovering disaggregated economic data from aggregate figures, given that the 
errors seem relatively low.  

Keywords: ecological inference; entropy econometrics; geographically disaggregated data 
and Spain 
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1. Introduction 

One non-unusual limitation for empirical urban economics analysis is the lack of information 
at a highly disaggregated level. With some exceptions, such as the U.S. or Canada in America 
or France in Europe, disaggregated data of GDP or income are not normally available, which 
can lead to the so-called Ecological Fallacy problem(Note 1). This lack of information is 
special evident in some countries in which the statistical develop is still in process of 
improvement.  

The non-availability of geographically disaggregated information prevents to obtain 
empirical evidence required to answer some relevant questions in the field of economics. For 
example: how agglomeration economies and diseconomies affects regional growth(Note 2), 
how much important is the structure of city (Duraton and Puga, 2002) or its local 
infrastructures (Elbers and McMiller, 1999), what are the effects of economic specialization 
or diversification, or what are the effects of local policies? (Thomas and Bromley, 2000). The 
theoretical literature has paid attention to these issues, but empirical analysis is often limited 
for the lack of data with a convenient spatial disaggregation.  

The objective of this paper is to suggest an estimation procedure, based on entropy 
econometrics, which allows for inferring disaggregated information on income from more 
aggregated data. We illustrate the implementation of our proposal with an estimation exercise 
of income at municipal level in Spain.  

The paper is divided into three further sections. The next section summarizes the entropy 
econometrics solution to the estimation problem and shows the main characteristics of the 
methodological proposal. In section 3 an application to estimate disaggregated income for a 
classification of municipalities for Spain in 2001 is presented. To evaluate the capacity of this 
estimation a Monte Carlo simulation exercise is proposed and we discuss the results obtained 
and compare them with other previous studies that applied different approaches. The main 
conclusions are summarizing in a last Section of conclusions and future research lines.  

 

2. The Methodology: Ecological Inference by Entropy Econometrics 

In this section, the basics of Entropy Econometrics will be introduced for estimate unknown 
probabilities in the context of pure inverse problems(Note 3). 

2.1 The Maximum Entropy (ME) and Cross Entropy (CE) Solutions to Pure Inverse Problems 

Traditionally, probability has been used as a measure of the uncertainty about an event. Let 
us assume that this event that can take K possible outcomes E1,E2,...,EK with the respective 
distribution of probabilities , , . . ,  such that ∑ 1.  Following the 
formulation of Shannon (1948), the entropy of this distribution will be: 
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( )  (1)

that takes its maximum when  is a uniform distribution ( ; 	 1, . . , ). This entropy 

measure gives the uncertainty of the outcomes of the event, but this univariate framework can 
be extended to situations where we are interested in the study of bidimensional distributions 
given by the pair of variables (x,y), where variable x can take K different values , , … ,  and variable y can take T values , , … , y , y , … , y .  

In this situation, the joint probability of a pair of random observations ( , ) will be denoted 
as  and the Shannon’s entropy measure for the  possible outcomes will be: 

( ) (2)
Again, the entropy measure reaches its maximum when  is uniform. Apart from measuring 

the uncertainty associated to a random process, Shannon’s entropy can be used for recovering 

an unknown probability distribution form partial or incomplete data.  

We will base our explanations on the matrix-balancing problem (Golan, 2006; page 6), where 

the goal is to fill the (unknown) cells of a matrix using the information that is contained in the 

aggregate data of the row and column sums. Graphically, the point of departure of our 

problem is a matrix like Table 1. 

Table 1: Known and unknown data in a matrix balancing problem 

 1 … …  1  11 … 1 … 1  
… …  …  … 

 1 … …  
… …  …  … 

 1 … …  

The z  elements of the matrix are the unknown quantities we would like to estimate, where ∑ z z , ∑ z z , and ∑ ∑ z z. These elements can be expressed as sets 

of (column) probability distributions, simply dividing the quantities of the matrix by the 

corresponding column sums z . Note that the previous matrix can be rewritten in terms of a 

new matrix	P that is composed by a set of T probability distributions (Table 2). 
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Table 2: The matrix balancing problem in terms of probabilities 

 1 …  …  

1 11 … 1  … 1  

… …  …  … 

 1 …  …  

… …  …  … 

 1 …  …  

 

Where the  are defined as the proportions , and the new row and column margins as 

 and  respectively. Consequently, the followings equalities are fulfilled by 

the  elements (note that in such a case, these elements can be seen as conditional 

probabilities to each column): 

1 ; ∀ 1,… , (3)
; ∀ 1,… , (4)

These two sets of equations reflect all we know about the elements of matrix	 . Equation (3) 
shows the cross-relationship between the (unknown)  in the matrix and the (known) 

sums of each row and column. Additionally, equation (4) indicates that the  can be 

viewed as (column) probability distributions. Note that we have only  pieces of 

information to estimate the  elements of matrix , which makes the problem ill-posed. 

In such a situation, usually called a pure linear inverse problem, the Maximum Entropy (ME) 
principle can be applied to recover the unknown  probabilities. This principle is based on 

the selection of the probability distribution that maximizes (5) among all the feasible 

probability distributions that fulfil (6) and (7).  

So, the following constrained maximization problem is posed: 

MaxH(P) p lnp  (5) 

Subject to: 
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p y x ; ∀i 1, … , K (6) 

p 1 ; ∀j 1, … , T (7) 

In this problem the equations (7) are just normalization constraints that guarantee that the 

estimated probabilities sum to one, and equations (6) ensure that the recovered distributions 

of probabilities are compatible with the aggregate data of  at all K observations. The 

Lagrangian function for such a problem will be: 

1 	 (8)
And the solutions (taking into account the first-order conditions) are: 

̂ ∑ ; ∀ 1,… ; 1, … , 	 (9)
where  are the Lagrangian multipliers associated with restrictions (6).  

Alternatively to this case, it might be also possible a situation where, in addition to the 
information contained in the aggregate data, we have available a set of prior probabilities . 

In other words, we want to transform an a priori probability matrix  into a posterior matrix 

 that is consistent with the vectors  and . This type of problem is frequent in some 

fields of economic research: for example in input-output analysis the researchers often must 

update an input-output matrix of coefficients to make it match with actual known row and 

column sums, using as a priori information the data collected in a previous table. 

The solution to this type of problems is obtained by minimizing a divergence measure with 

the prior probability matrix  subject to the set of constraints (6) and (7). The ME problem 

is therefore transformed into a so-called Cross-Entropy (CE) problem, which can be written 

in the following terms: 

( ‖ ) (10)
Subject to the same restrictions given by the set of equations (6) and (7). The divergence 

measure ( ‖ ) is the Kullback-Liebler entropy divergence between the posterior and 

prior distributions. The Lagrangian function for the CE problem is: 
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( ‖ ) 1 	 (11)
And the solutions are: 

∑ ; ∀ 1,… ; 1, … , 	 (12)
The CE estimation procedure can be seen as an extension of the ME principle (or 

alternatively the ME can be considered as a particular case of the CE procedure), given that 
the solutions of both approaches are the same ( ̂ ) when the  a priori probability 

distribution contained in  are all uniform. In other words, the ME solutions are obtained by 
minimizing the Kullback-Liebler divergence ( ‖ ) between the unknown  and the 

probabilities 	∀ 1, . . , . 

2.2 The ME-CE Approach in the Presence of Noisy Data 

The entropy solutions depicted above to recover unknown probability distributions can be 

applied also to situations different from the pure inverse problems. Consider a case where, for 

example, the observations of vector x are “contaminated” by some measurement error; or, 

alternatively, a situation where the x values are affected by some uncontrolled factor different 

from the pure linear relationship with y. In both cases, the equation (13) that relates  and  

will be affected by the presence of a random disturbance  in the following terms:  

; ∀ 1,… , (13)
Or, more generally: (14)
Entropy econometrics can also deal with the estimations of the unknown  elements in 

such situations, which is the typical specification of a linear econometric model. This section 

will focus only on the application of the CE techniques given that, as commented before, the 

ME solution can be seen as a particular case of the CE approach when 	∀ 1, . . , . 

A first step to estimate the  probabilities is the reparametrization of the  terms, given 

that the CE formulation is designed for dealing with elements that behave as proper 
probability distributions (condition fulfilled by the  but not for the ). This 

reparametrization allows us to generalize the use of the CE technique (Generalized Cross 

Entropy or GCE hereafter) to these familiar linear models.   
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Oppositely to other estimation techniques, GCE does not require rigid assumptions about a 

specific probability distribution function of the stochastic component, but it still is necessary 

to make some assumptions. Basically, we represent our uncertainty about the realizations of 

vector  treating each element  as a discrete random variable with 2  possible 

outcomes contained in a convex set , … , , which for the sake of simplicity is 

assumed as common for all the . We also assume that these possible realizations are 
symmetric around zero ( ). The traditional way of fixing the upper and lower limits 

of this set is to apply the three-sigma rule. Under these conditions, each element  can be 

defined as: 

; ∀ 1,… , (15)
Where  is the unknown probability of the outcome  for the observation i, which 

implies that  is assumed to have mean 0 and a finite covariance matrix. From this 

reparametrization, equation (15) can be written as:   

; ∀ 1, … , (16)
Or, more generally: (17)
Now we need also to estimate a ( ) matrix  for the (1 ) support vector . From a 

matrix  of a priori probabilities, the CE program depicted before can be rewritten as a 

GCE in the following terms: 

, ( , ‖ , ) 	 (18)
Subject to: 
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; ∀ 1, … , (19)
1 ; ∀ 1,… , (20)
1 ; ∀ 1,… , (21)

Note that this GCE program comes from introducing in the pure inverse problem the 

estimation of the unknown probabilities corresponding to the stochastic term . The 

solutions of the GCE program are: 

∑ 
; ∀ 1,… ; 1, … , 	 (22)

∑ ; ∀ 1,… ; 1, … , 	 (23)
Equation (22) presents an identical structure to (12) for the estimated  probabilities. 

Equation (23) shows the CE solution for the estimation of  when the a priori 

probabilities are fixed as uniform ( 	∀ 1, . . , ), which is the natural (and most 

frequently applied) point of departure to reflect the high degree of uncertainty about .   

2.3 Recovering Individual Characteristics from Aggregate Data: Ecological Inference Based 
on CE-GCE Techniques 

The entropy-based estimation techniques sketched before can be directly applied to the field 

of Ecological Inference (EI), which can be roughly defined as the attempt to infer individual 

characteristics from aggregate information. The research in this area has experienced an 

enormous development in the last years, given its usefulness in many academic disciplines of 

social science as well as in policy analysis. The foundations of EI were introduced in the 

seminal works by Duncan and Davis (1953) and by Goodman (1953), whose techniques were 

the most prominent in the field for more than forty years, although recent works (King, 1997) 

implied a substantial development by proposing a methodology that conciliated and extended 

the approaches taken previously(Note 4). 

Actually, in one of the chapters of that work, Judge et al. (2004) propose the use of 

information-based estimation techniques in the field of EI, although their proposal is made in 
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a different context (the estimation individual voters’ behavior from aggregate election data). 

Peeters and Chasco (2006) also combined entropy econometrics in the context with EI but in 

a different way to the one proposed in this paper. Roughly speaking, they used GCE for 

estimating a weighted regression model that allows for recovering characteristics at a regional 

scale from information at a national level.    

To explain how the GCE technique can be applied in the context of EI, consider a 

geographical area (a country, for example) that can be divided in T smaller spatial units 

(regions). Besides to this first geographical partition, suppose that another division according 

other characteristic is also possible. Consider that the second criterion applied for this 

additional partition is a classification of the municipalities that configure the country, 

obtaining K different types of municipalities. In such a context, the objective would be to 

estimate how a variable is distributed among the regions according to the classification of 

municipalities, using as information aggregate data. Graphically, this estimation problem can 

be represented by a grid with the same structure as Table 2.  

Table 3: A spatial division across regions and type of municipality 

  Regions 

   … …  

T
yp

e 
of

 

m
u

n
ic

ip
al

it
y   … …  

… …  …  … 
  … …  

… …  …  … 
  … …  

 

Each one of the  is now defined as the (unknown) proportion of the variable that is 
allocated in the municipalities of type i situated in the region j, forming a ( ) matrix  
with T unknown probability distributions.  The (1 ) row vector y represents the regional 
proportions of the variable and the ( 1) column vector x shows the national allocation of 
the variable according to the type of municipality. Note that these two vectors contain the 
aggregate data existing for the researcher, which our EI estimation will be based on. If an a 
priori set of probability distributions  is also available, the cross entropy procedures 
outlined previously can be directly applied.  

Note that both the CE technique for pure inverse problem as well as a GCE program that 
include the presence of a random term are applicable in this context, and it is a decision to be 
made by the researcher to follow one specific approach. In the first case, we will assume that 
there is a pure linear relationship between the row and column margins of our matrix, and the 
following CE program would have to be solved: 
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( ‖ ) (24)
Subject to: ′ (25)′ ′ (26)
Where  stands for an appropriate (column) vector of ones. Alternatively, if it seems 
realistic the inclusion of a random term that affects the observations of vector x, it would be 
necessary to solve the following GCE program and estimate jointly matrices  and : 

, ( , ‖ , ) (27)
Subject to: (28)′ ′ (29)(30)
Being  the corresponding column vector of ones. 

 

3. An Application to Estimate Urban Income in Spain According to City Size 

3.1 Application to the Spanish Data 

Spanish official data on income at a municipal level are not generally available, but and the 
subsequent estimation problem can be posed in similar terms to the matrix balancing 
described in the second section. Spain is administratively divided in 50 provinces for which 
data on income is available in the Regional Accounts annually elaborated by the Spanish 
Statistical Institute (INE). Additionally, from 1998 to 2004 the INE also produced the 
Continuous Survey on Household Budgets (ECPF), where one can find information of 
income and expenditure characteristics from a quarterly sample of approximately 8.000 
Spanish families(Note 5). Particularly interesting for our research, the longitudinal files 
containing the micro-data provide annual information about the personal income distribution 
according to the type of municipality. Table 4 shows this municipal classification. 
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Table 4: Classification on the Spanish municipalities on the continuous survey on household 
budgets 

Type of municipality Description 
m1 Capital city of the province (independently on its population) 
m2 Municipality with more than 100,000 inhabitants 
m3 Municipality with a population between 50,000 and  100,000 
m4 Municipality with a population between 20,000 and  50,000 
m5 Municipality with a population between 10,000 and  20,000 
m6 Municipality with less than 10,000 inhabitants 

The information sources described above allow for obtaining the row and column margins 
represented by the vectors  and  in Table 2. Vector , with dimension (6 1), contains 
the proportion of income by type of municipality and the (1 50) vector  with the 
provincial proportions of income. From these aggregate data, we will apply the entropy-based 
estimation strategy explained in previous sections to recover the allocation of provincial 
income according to the type of municipality for 2001. We have chosen this specific year 
because this is also the reference year of the most recent census elaborated in Spain, which 
provides information for specifying a natural a priori distribution  based on the provincial 
distribution of labor by type of municipality. From this point of departure, let us assume a 
pure linear relationship between vectors  and  to solve the following CE problem: 

( ‖ ) (31)
Subject to: 

; ∀ 1,… ,6 (32)
1 ; ∀ 1,… ,50 (33)

The solution to this CE program is presented in Table 5 for all the Spanish provinces. The 

income values have been obtained as the respective estimate of p  multiplied by the total 

income of province j. Note that the estimates have been divided by the respective population 
to provide results of income per capita (in thousands of Euros).  
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Table 5: CE estimates of income per type of municipality (thousands €/person) 

 m1 m2 m3 m4 m5 m6 

Almeria 14.36  18.22 16.13 16.12 13.77 
Cádiz 13.68 12.84 11.85 11.98 12.42 10.44 

Cordoba 11.42   10.83 10.75 9.67 
Granada 12.09  12.16 8.09 12.78 10.36 
Huelva 14.00   12.55 13.18 11.81 

Jaen 12.79  9.75 10.52 10.93 10.06 
Málaga 13.19 12.74 5.84 13.84 11.19 10.71 
Sevilla 16.24 12.20 11.21 7.19 10.56 10.52 
Huesca 19.86    14.09 17.48 
Teruel 20.34    19.78 15.51 

Zaragoza 17.92    16.02 15.55 
Asturias 16.75 14.26 13.36 11.88 12.76 13.76 
Baleares 21.22   16.36 16.89 20.17 

Las Palmas 15.89  14.76 15.95 14.76 18.33 
Tenerife 14.21 14.61 14.68 12.58 15.68 14.62 

Cantabria 15.87  14.34 16.39 15.46 15.69 
Avila 14.90     11.87 

Burgos 18.64   17.19  17.25 
León 14.89  13.40 16.04 9.59 13.64 

Palencia 15.63     14.51 
Salamanca 14.59    13.34 12.63 

Segovia 17.01     15.48 
Soria 16.89     15.18 

Valladolid 16.95   14.83 18.98 16.39 
Zamora 13.23    12.61 10.81 
Albacete 13.41   12.29 12.16 10.84 

Ciudad Real 15.11  10.95 13.81 13.63 12.25 
Cuenca 13.99    13.53 11.84 

Guadalajara 16.04   17.31  12.51 
Toledo 14.75  12.42  17.13 12.08 

Barcelona 28.26 16.35 13.12 13.13 13.94 22.43 
Girona 18.36   18.28 19.11 20.70 
Lleida 20.86    19.95 19.75 

Tarragona 22.10  19.71 19.96 19.71 20.66 
Alicante 16.44 14.71 11.83 10.55 15.96 16.50 
Castellon 19.14   18.00 18.80 17.55 
Valencia 17.65  13.29 12.96 15.84 15.98 
Badajoz 12.65  12.27 10.96 10.90 9.21 
Cáceres 11.90   10.73 7.92 10.44 

 m1 m2 m3 m4 m5 m6 

Coruña 14.46  12.07 13.31 12.39 12.95 
Lugo 14.19    12.37 11.56 

Orense 13.49    12.43 10.68 
Pontevedra 13.80 12.98  10.90 14.14 12.60 

Madrid 28.74 14.15 11.73 10.63 13.45 18.05 
Murcia 14.96 12.19 13.90 13.13 12.96 12.24 
Navarra 22.18   20.50 16.10 20.07 

Alava 23.02    18.90 21.55 
Guipúzcoa 22.09  20.00 20.30 20.40 21.97 

Vizcaya 20.59  16.76 17.73 19.33 20.23 
La Rioja 18.96   17.74 17.42 17.39 
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Given the lack of official geographically disaggregated data on income in Spain, there have 
been some previous attempts of estimating this variable. Usually, these estimates are based 
on some regression model that requires information on a set of regressors observable at the 
same level of disaggregation as the income itself. In order to check if our estimates were 
consistent with previous empirical findings, we would compare our CE estimates with these 
previous results. Although they differ in the specific region studied, the year of reference 
and/or the methodology used, the comparison with some of them could be still interesting. 
We opted for taking into consideration three different studies realized in years nearest as 
possible to the reference time period of our application. One of them is the work by Chasco 
and Lopez (2004), who estimated by means of spatial econometric models the income per 
capita of the municipalities located in Murcia for 2001. Besides, the Statistical Institute of 
Aragon made an estimation of income of municipalities of the region for 2000. Finally, 
SADEI (the Statistical Office of Asturias) made the same exercise for 2000. Table 6 presents 
the results for those municipalities that we are able to identify, given the classification used in 
this paper. The comparison with our estimates suggest that the results obtained by the CE 
approach are in line with these previous studies, given the reduced size of the differences 
(around 10% for the region of Murcia, but ranging between 5% and 7% for the cases of 
Asturias and Aragon). 

Table 6: Income per capita previous studies and comparisons with our results (thousands 
€/person) 

Province 

Municipality 

Previous studies Our estimations 

(2001) Year Result 

Asturias 

Oviedo 

Gijón 

Avilés 

2000 

 

11,468 

10,378 

9,191 

 

12,371 

10,534 

9,883 

Aragón 

Huesca 

Teruel 

Zaragoza 

2001 

 

15,383 

13,343 

12,788 

 

15,326 

14,093 

13,653 

Murcia 

Murcia 

Cartagena 

2001 

 

9,076 

10,090 

 

10,771 

8,799 

3.2 Testing the methodology by a numerical experiment 

Even when the general properties of the CE-GCE estimators have been largely studied in the 
literature (see for example Golan et al., 1996, or Golan, 2006), and when our estimation 
results seem to be close to previous estimates, some doubts about the accuracy of the specific 
estimates reported in the paper might emerge. In order to test if the entropy-based techniques 
applied in the previous section of the paper perform well in such conditions, a simple 
numerical experiment has been carried out. The goal of this exercise is to get some empirical 
evidence on the performance of the CE and CGE approaches to estimate a unknown (6 50) 
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matrix  of probabilities from aggregate data and some a priori matrix .  

Our Monte Carlo experiment will depart from the actual vector y of proportions of income 
for the Spanish provinces in 2001 and it is kept fixed along the simulations. Additionally, in 
each trial of the simulation a randomly generated matrix  is obtained; which is composed 
by elements  that have been drawn from a uniform distribution as ~ 0,0.2 ; 	1, … ,5; and	 1 ∑  in order to assure that they behave as a set of proper (column) 

probability distributions. Based on the linear relationship 	 ′, vector x is obtained in 
each trial, and together with the observations of vector y, it represents the aggregate data to 
obtain the estimates of the (now assumed) unknown matrix . Another important piece in 
the estimation process is the choice of the matrix . To reflect the idea that the specification 
of this a priori matrix can be more or less similar to the matrix , in our experiment the cells 
of  have been generated from  and a random disturbance 	in the following way (this 
approach is based on the experiment carried out in Golan et al. (1996, pages 63 
and 64), to avoid undesirable negative values on  ∀ 1,… ,5;  where the 

number generation obtained a negative, it has been replaced by  10 ): 

; ∀ 1,… ,5; ∀ 1,… ,501 ; ∀ 1,… ,50 	 (31)
where ~ (1, ) and being  a scalar. Note that if 0 , then  for all the cells 
of both matrices. The bigger the value of	 , the larger the divergence between matrices  
and , and consequently, the smaller the expected accuracy of the estimation. This 
consequence is rather logical, given that a good specification of the  matrix (close to the 
real 	matrix) will be helpful in the estimation process. On the contrary, if the  chosen 
differs significantly from the actual  the data observed in the sample (the vectors  and ) 
will have more difficulties to lead the estimates to solutions close to the real values. 

In the experiment six different scenarios have been simulated for several values of the scalar 
: 0.1, 0.2, 0.25, 0.35, 0.4 and 0.5. Both the CE and the GCE (applying in this last case the 

three-sigma rule for the support of the error term) solutions have been obtained under these 
levels of divergence between  and . In each one of these six scenarios 1,000 trials have 
been carried out and the average of two overall measures of error have been computed: the 
root of the mean squared error (RMSE), which has been obtained as ∑ ∑ , and the mean absolute error (MAE), defined as ∑ ∑ , where   stands for both the CE and GCE estimates. 

The Table 7 shows the results of these error measures.  
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Table 7: Error measures in the Monte Carlo simulation 

CE estimation 0.5 0.4 0.35 0.25 0.2 0.1
RMSE 0.005 0.003 0.003 0.001 0.001 0.000
MAE 0.049 0.040 0.035 0.025 0.020 0.010
GCE estimation 0.5 0.4 0.35 0.25 0.2 0.1
RMSE 0.072 0.059 0.052 0.037 0.030 0.015
MAE 0.050 0.040 0.036 0.026 0.021 0.010

As expected, the error measure are (slightly) larger in all cases if we apply a GCE estimation 
program compared with the estimates obtained a CE approach. This result is not surprising, 
given that the GCE allows for the presence of an error term that prevents an exact match 
between the row and column margins through the estimate of matrix . Moreover, the 
deviations between real and estimated  elements increase as the divergence between the a 
priori  and the real matrix  get bigger. Although the RMSE measure seems more 
sensitive to the specification choice between a pure CE or a GCE estimation program, both 
error measures RMSE and MAE kept in moderate levels even for considerably big values of 
the scalar . 

These outcomes give a rough idea on the size of the error that presumably our empirical 
application on section 3 can present. If we compare the distribution of income per province 
with the provincial distribution of labor in the census (both taken in 2001) by means of a 
quotient, which is similar to the  disturbance considered in the Monte Carlo experiment, 
we obtain a (50 1) vector that behaves approximately as a normal distribution and with a 
sample standard deviation of 0.19. This result suggests that the estimates obtained for the 
local per capita income, based on the estimates of the unknown  elements, for the case of 
Spain can be taken as reasonably reliable.   

 

4. Final Remarks and Future Research Lines 

The availability of geographical disaggregated data, especially referred to the urban and 
metropolitan areas, is a growing need not only for academic studies but also for policy 
makers. Nevertheless, in most of the cases the degree of disaggregation of official statistics 
does not allows having information at that level. This paper proposes a methodology based 
on Entropy Econometrics to estimate data from aggregated information.  

We apply it to the Spanish economy in which disaggregated local income data are not 
available. The results obtained for the 2001 year are in line with previous works applied for 
some specific cities of Spain. It is also checked using a Monte Carlo simulation that shows 
that this procedure do not make significant errors in the estimations.  

Some basic ideas could already be observed in the Spanish economy with the obtained data. 
There exists, for example, important differences inside the regions among the urban and rural 
areas and, even, among different cities. Normally we can contrast that when the bigger is the 
city the higher is the aggregate income. From this estimations are now quite easy obtain 
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series of income desegregated and analyze the evolution. It is also possible to calculate the 
labor productivity and observe how it changes with the presence of agglomeration economies. 
The procedure could also be applied to other relevant data and have an opportunity to check 
the geographical economy in cases like Spain in which local information is not normally 
available.  
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Notes 

Note 1. For an introduction to the problem see Robinson (1950). Recent examples of 
empirical analysis were the consequences of this problem are explicitly studied can be found, 
among many others, in Duque et al. (2006) or Dumedah et al. (2008). 

Note 2. See Henderson and Thisse (2004) or, among many others, Fujita and Thisse (2002). 

Note 3. More extensive introductions can be found in Kapur and Kesaban (1992), Golan et al. 
(1996) or Golan (2006) 

Note 4. An extensive survey of recent contributions to the field can be found in King et al. 
(2004). 

Note 5. More detailed information on these surveys can be found in www.ine.es. 
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