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Abstract 

The four-parameter generalised lambda distribution provides the flexibility required to 
describe the key moments of any distribution as compared with the normal distribution which 
characterises the distribution with only two moments. As markets have increasingly become 
nervous, the inadequacies of the normal distribution in capturing correctly the tail events and 
describing fully the entire distribution of market returns have been laid bare. The focus of this 
paper is to compare the generalised method of moments (GMM) and maximum likelihood 
essential estimates (MLE) methods as subsets of the GLD for a better fit of JSE All Share 
Index returns data. We have demonstrated that the appropriate method of the GLD to 
completely describe the measures of central tendency and dispersion by additionally 
capturing the risk dimensions of skewness and kurtosis of the return distribution is the 
Generalised Method of Moments (GMM) with the Kolmogorov-Smirnoff Distance 
good-of-fit statistics and the quantile-quantile graph. These measures are very important to 
any investor in the equity markets. 
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1. Introduction 

Risk is important to investors for any level of market return. In frontier markets with short 
histories, long historical data may be lacking for modeling purposes. Market analysts are also 
absent in most cases to follow usually thinly traded equities to serve the investor community. 
This makes it extra challenging for investors to assess the risk-return characteristics of their 
portfolios in such markets. 

We seek to ameliorate this challenge by providing a flexible four-parameter distribution 
model; the Generalised Lambda Distribution (GLD) to model the characteristics of market 
returns and the tails risk essential to guide market participants in forming efficient portfolios. 
In the process of comparing the better fit between the GMM and MLE under GLD we show 
the performance of our models by comparing them to the two-parameter normal distribution; 
a popular but rather discredited model in risk modeling of equity returns (see Fama & 
MacBeth, 1973; Giot & Laurent, 2004; Hull & White, 1998). 

Modeling market returns by using the normal distribution does not provide the flexibility 
needed as compared to, for instance, the four-parameter generalised lambda distribution. To 
capture the stylised facts of a security or a return series there arises the need to model the 
returns in their entirety. Value-at-Risk (VaR) vis-a-vis Expected Shortfall (ES), as good 
examples, requires us to capture the risk properties of a return using only the quantile values 
in the left tail of the distribution. 

The need to model just the tail behaviour of the losses in assets returns is a matter of 
empirical concern. But is it well known that the normal distribution is a poor model for stock 
returns (Eberlein & Keller, 1995). The classes of generalised hyperbolic distribution (GHD) 
have the capabilities of mirroring both tail behaviour and asymmetries of returns which is a 
desired property of distributions in finance. Besides the normal distribution many models 
have been investigated (see Eberlein & Keller, 1995) but it was the class of hyperbolic 
distributions which turned out to be an excellent candidate to provide a more realistic model. 
In this paper we model the Johannesburg Stock Exchange All Share Index (JSE - ASI) with 
the generalised lambda distribution (GLD) using the generalised method of moments (GMM) 
and the maximum likelihood estimation (MLE) approaches to establish the better fit for the 
data. 

Except for Corrado (2001), Tarsitano (2004), Chalabi, Scott, & Wuertz (2012), and Pfaff, 
(2013) there has been little application of GHD; especially of the generalised lambda 
distribution (GLD) to data. Pfaff (2013) for instance, applies the GHD and its special cases, 
namely; hyperbolic distribution (HYP), normal inverse Gaussian distribution (NIG), and 
generalised lambda distribution (GLD) to financial market data; the Hewlett-Packard (HWP), 
to draw useful insights.  

The shape range of the GLD family, for instance, is so large that it can accommodate almost 
any financial time series especially useful in the estimation of risk measures where the choice 
of distribution is crucial for accuracy (Chalabi et al., 2012). His work also showed that these 
multi-parameter distributions provide a good description of the distribution of equity returns 
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for the DOW. We have, however, not seen these distributions in empirical work in emerging 
and frontier markets. Given investors perception that these two markets are risky (see 
Claessens, Dasgupta, & Glen, 1995; Errunza & Padmanabhan, 1988; Hassan, Maroney, 
El-Sady, & Telfah, 2003; Hearn, Piesse, & Strange, 2010); the need arises to establish 
risk-return characteristics in equity and indeed related securities in these markets on a sound 
theoretical footing. In this paper, therefore, we find the better fit for log returns of the 
Johannesburg Stock Exchange All Share Index (JSE-ASI) between the GMM and MLE 
methods. 

2. Theoretical Framework 

2.1 Generalised Hyperbolic Distributions (GHD) 

Hyperbolic distributions are characterised by their log-density being a hyperbola unlike 
normal distributions whose log-density is a parabola. One can then expect to obtain a 
reasonable alternative for heavy tail distribution (Eberlein & Keller, 1995). The 
parameterised hyperbolic density function can be given as  

 ℎ(ݔ)݌ݕ = ඥߙଶ − ଶߙඥߜΚ஁൫ߜߙଶ2ߚ − ଶ൯ߚ exp ൬−ߙඥߜଶ + ݔ) − ଶ(ߤ + ݔ)ߚ −  ൰ (2.1)(ߤ

where Κ is the modified Bessel function of the third kind with index Ι. ߙ and ߚ with ߙ > 0 
and 0 ≤ |ߚ| < ߙ  determine the shape of the distribution, while ߜ  and ߤ  are scale and 
location parameters respectively. Koudou & Ley (2014) assert that in 1977 Barndorff-Nielsen 
and Halgreen showed that the generalised inverse Gaussian distribution (GIGD), sometimes 
called Halphen Type A distribution, with the following probability density function 

;ݔ)݃݅݃  ,ߣ ߯, ߰) = (߰/߯)ఒ/ଶ2Κ஛൫ඥ߯߰൯ ఒିଵexpݔ ൜− 12 ଵିݔ߯) + ,ൠ(ݔ߰ ݔ) > 0) (2.2) 

has the property of infinite divisibility which is used in the representation of hyperbolic 
distributions as a mixture of normals. Any mixture of the r-dimensional normal distributions ௥ܰ(ߦ, Σ) determined by setting ߦ = ߤ + Δ and Σߚଶߪ =  ଶΔ. This class of mixtures includesߪ
the r-dimensional hyperbolic distribution 

,ߙ)ܽ  ,ߚ ,ߜ Δ)݁݌ݔ ቄ−ݔඥߜଶ + ݒ) − ݒ)Δିଵ(ߤ − ᇱ(ߤ + ݒ))ߚ −  ቅ (2.3)((ߤ

where Δ  is a positive definite ݎ × |matrix with determinant |Δ ݎ = 1  and setting κ =ඥߙଶ −   ᇱ, the norming constant is given byߚΔߚ

,ߙ)ܽ  ,ߚ ,ߜ Δ) = ଶ/(௥ିଵ)(ߨ2)1 . κ(௥ାଵ)/ଶ2ߜߙ(௥ାଵ)/ଶΚ(௥ାଵ)/ଶ(ߢߜ) (2.4) 
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was introduced by the same authors a year earlier (Barndorff-Nielsen, Blaesild, & Halgreen, 
1978; O. Barndorff-Nielsen & Halgreen, 1977).  

Based on the daily prices of the 30 DAX shares over a three-year period Eberlein & Keller 
(1995) investigated the distributional form of compound returns after performing a number of 
statistical tests to the logical conclusion that some standard assumptions could not be justified. 
Hence, they introduced the class of hyperbolic distributions which can be fitted to empirical 
returns with high accuracy. This was the application of GHD to the increments of financial 
market price processes probably first proposed by Eberlein and Keller in 1995 (i.e. the returns 
resulting from geometric Brownian motion are increments of a Brownian motion process, 
thus are independent and normally distributed). Again tests applied to real data in this way 
demonstrate failure of the normality assumption.  

The popularity of the class of GHDs in finance was pioneered in seminal papers in the late 
1990s (see (Barndorff-Nielsen & Shephard, 1998; Barndorff-Nielsen & Halgreen, 1977; 
Eberlein, Keller, & Prause, 1998; Prause, 1997, 1999). However the application of hyperbolic 
distributions in fields other than finance is not limited. The motivation for Barndorff-Nielsen 
& Halgreen (1977) to introduce the hyperbolic distributions was the observation by Bagnold 
(1941) that the logarithm of the density function of distribution of the logarithm of the grain 
size in natural sand deposits looks more like a hyperbola than a parabola (Sørensen, 2006). 

2.2 Generalised Lambda Distribution (GLD) 

The four-parameter (quantile) GLD family is known for its high flexibility, producing 
distributions with a range of different shapes. To start with (Ramberg & Schmeister, 1974) 
show six regions in which the shape parameters can lie for which the shapes of the GLD are 
similar, as shown in Figure 1; the figure is as given in King & MacGillivray (1999) with 
notation introduced by Ramberg, Dudewicz, Tadikamalla, & Mykytka (1979), Chalabi et al. 
(2012), and Chalabi, Scott, & Würtz (2010). The modern Freimer, Kollia, Mudholkar, & Lin 
(1988) - FMKL GLD (2.6) places the only restriction of ߣସ > 0. The fundamental motivation 
for the development of FMKL GLD is that the distribution is defined over all ߣଷ and ߣସ 
(Su, 2007b). 

The quantile probability density function of the GLD (henceforth referred to as RS GLD) is 
given as the inverse distribution function of Tukey’s lambda distribution (TLD) 

(ߣ|ߩ)ଵିܨ  = ,ଵߣ|ߩ)ଵିܨ ,ଶߣ ,ଷߣ (ସߣ = ଵߣ + ఒయߩ − (1 − ଶߣఒర(ߩ  (2.5) 

where ߩ are the probabilities, ߩ ∈ ,ଵߣ ,[0,1] ,ଷߣ ଶ are the location and scale parameters, andߣ  ,ସ are the shape parameters jointly related to the strengths of the lower and upper tailsߣ
respectively. The original one-parameter TLD results in the limiting case ߣଵ = 0  and ߣଶ = ଷߣ = ସߣ =   .(Chalabi et al., 2010) ߣ

The FMKL GLD can be written as  
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(ߣ|ߩ)ଵିܨ = ,ଵߣ|ߩ)ଵିܨ ,ଶߣ ,ଷߣ (ସߣ = ଵߣ + ఘഊయିଵఒయ − (ଵିఘ)ഊరషభఒరߣଶ  (2.6) 

  

 

Figure 1. Graph of the parameters regions of the GLD in the  ࣅ૜ vs.  ࣅ૝ space that produce 
proper statistical distributions. Source: (Chalabi et al., 2010) 

The parameter constellations that fall in the third quadrant imply skewed and heavy-tailed 
distributions; that is a nice characteristic of stylised facts about financial return series giving 
more credence to the use of non-normal distributions, in this case GLD to capture this 
behaviour (Pfaff, 2013). 

The various methods for estimation of the optimal values for the parameter vector ߣ in  the 
literature include, among others (1) moment-matching approach by Ramberg & Schmeister 
(1974) and Ramberg et al. (1979), (2) percentile-based approach by Karian & Dudewicz 
(1999), (3) histogram-based approach by Su (2005), (4) goodness-of-fit approach by Owen 
(1988), (5) maximum likelihood (ML) and maximum spacing approaches by Cheng & Amin 
(1983) and Ranneby (1984) and (6) least squares (LS)-approach (see Karvanen & Nuutinen, 
2008; Öztürk & Dale, 1982, 1985). 

Su (2007a) discussed two general approaches to fitting generalised lambda distributions to 
data; using the discretised method and maximum likelihood estimation (or an approach that 
aims to provide a definite fit to the data set such as maximising the goodness of fit) with his 
own authored GLDEX package in R (R Core Team, 2016). However, the maximum 
likelihood estimation is preferred to the former not just for its efficiency but also likely to 
produce GLD with closer first four moments to the data set (see Su, 2005, 2007a).  
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Stemming from an extensive investigation by Karian & Dudewicz (2000), King & 
MacGillivray (1999), Ramberg & Schmeister (1974), Ramberg et al. (1979), etc. on the 
symmetry distribution version of the GLD given for ߣଷ =  ସ, not all parameter combinationsߣ
yield valid density functions (Pfaff, 2013). The probability density function of the GLD at ݔ =   is given by (ߣ|ߩ)ଵିܨ

(ݔ)݂  = ((ߣ|ߩ)ଵିܨ)݂ = ଷߣଶߣ ఒయିଵߩ − ସߣ (1 −  ఒరିଵ (2.7)(ߩ

Valid parameter combinations of ߣ must yield (2.8) and (2.9): 

(ݔ)݂  ≥ 0 (2.8) 

 න ݔ݀(ݔ)݂ = 1 (2.9) 

for ݂(ݔ) in (2.7) to qualify as density function (Pfaff, 2013). 

This is going to be the only mention of symmetry in this paper since the focus is fitting the 
GLD to financial return series. The limitation pointed out here does not affect the superiority of 
the GLD over normal distribution, at least, in fitting the JSE-ASI. 

One advantage of the GLD is that the computation of VaR and ES can easily be achieved after 
a return series has been fitted herewith; expressed as positive numbers of returns and not for 
losses (Pfaff, 2013).  

Hyperbolic distributions are characterised by their log-density being a hyperbola unlike 
normal distributions whose log-density is a parabola. One can then expect to obtain a 
reasonable alternative for heavy tail distribution (Eberlein & Keller, 1995). The 
parameterised hyperbolic density function can be given as  

 ℎ(ݔ)݌ݕ = ඥߙଶ − ଶߙඥߜΚ஁൫ߜߙଶ2ߚ − ଶ൯ߚ exp ൬−ߙඥߜଶ + ݔ) − ଶ(ߤ + ݔ)ߚ −  ൰ (2.2)(ߤ

where Κ is the modified Bessel function of the third kind with index Ι. ߙ and ߚ with ߙ > 0 
and 0 ≤ |ߚ| < ߙ  determine the shape of the distribution, while ߜ  and ߤ  are scale and 
location parameters respectively. Koudou & Ley (2014) assert that in 1977 Barndorff-Nielsen 
and Halgreen showed that the generalised inverse Gaussian distribution (GIGD), sometimes 
called Halphen Type A distribution, with the following probability density function 

;ݔ)݃݅݃  ,ߣ ߯, ߰) = (߰/߯)ఒ/ଶ2Κ஛൫ඥ߯߰൯ ఒିଵexpݔ ൜− 12 ଵିݔ߯) + ,ൠ(ݔ߰ ݔ) > 0) (2.2) 

has the property of infinite divisibility which is used in the representation of hyperbolic 
distributions as a mixture of normals. Any mixture of the r-dimensional normal distributions ௥ܰ(ߦ, Σ) determined by setting ߦ = ߤ + Δ and Σߚଶߪ =  ଶΔ. This class of mixtures includesߪ
the r-dimensional hyperbolic distribution 
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,ߙ)ܽ  ,ߚ ,ߜ Δ)݁݌ݔ ቄ−ݔඥߜଶ + ݒ) − ݒ)Δିଵ(ߤ − ᇱ(ߤ + ݒ))ߚ − ቅ((ߤ (2.3) 

where Δ  is a positive definite ݎ × |matrix with determinant |Δ ݎ = 1  and setting κ =ඥߙଶ −   ᇱ,  the norming constant is given byߚΔߚ

,ߙ)ܽ  ,ߚ ,ߜ Δ) = ଶ/(௥ିଵ)(ߨ2)1 . κ(௥ାଵ)/ଶ2ߜߙ(௥ାଵ)/ଶΚ(௥ାଵ)/ଶ(ߢߜ) (2.4) 

was introduced by the same authors a year earlier (Barndorff-Nielsen, Blaesild, & Halgreen, 
1978; O. Barndorff-Nielsen & Halgreen, 1977).  

3. Methodology  

In comparing MLE and GMM we are embarking on a journey of goodness of fit. Thus going 
through parameter estimation procedure to find the values of GMM and MLE that best fit the 
JSE-ASI data. The GMM and MLE have come head-to-head as alternatives to statistical 
estimation since over two decades after the former was introduced in 1894 by Karl Pearson. 
In recent years, however, financial econometricians have found working under assumed 
likelihood functions restrictive, and have suggested using a generalised version of Pearson’s 
MM approach, commonly known as GMM estimation procedure as advocated by Bera & 
Bilias (2002) and Hansen (1982).  

Fisher (1922) asserts that the parameters of the MM are those of an infinite population of the 
specified type having the same moments as those calculated from the sample, its application 
has not been shown except in the case of the normal curve. To discover whether this 
approximation is good or bad he proposes an improvement, if possible, by requiring a more 
adequate criterion. By assessing the suggestions from Fisher (1922), Pearson (1936) found 
that the additional computing work after the determination by moments is “as long as, I think 
longer than, the first fitting by moments”. The blunders in both MM and MLE are explored in 
the same paper thereof. Notwithstanding, GMM is seen, largely, as an applicable parameter 
estimation strategy which shells the classic method of moments, linear regression, and 
maximum likelihood (Chaussé, 2010, 2012). 

3.1 Generalised Method of Moments (GMM) 

Pearson (1894) introduced a formal approach to statistical estimation through his method of 
moments (MM) where estimators or parameters are derived from moment conditions - 
estimating parameters of distributions using moment equations. As hinted by Pearson (1936) 
GMM estimation is often possible where a likelihood analysis is extremely difficult and 
Wooldridge (2001); that the MM applies in more complicated situations. The theory of GMM, 
restricted to large-sample comparisons helps with the use of two unbiased consistent method 
of moments estimators in a manner that minimises the asymptotic variance among method of 
moment’s estimators (Wooldridge, 2001).  
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The GMM is relatively advantageous for time series data. This comes as no surprise for the 
reason that Hansen (1982) introduced the GMM primarily with time series applications in 
mind, and it can be used to obtain parameter estimators that are consistent under weak 
distributional assumptions (Wooldridge, 2001). The method of moments consists of equating 
empirical moments with theoretical moments Focardi & Fabozzi (2004) in order to get 
estimators of the parameters (Iacus, 2011). 

Chaussé (2010) and Chaussé (2012) thus conclude; because GMM depends only on moment 
conditions, it is a reliable estimation procedure for many models in economics and finance. 
With the right moment conditions the GMM is more appropriate than maximum likelihood. 
In this paper we see how that plays out for our set of data; a corroboration. 

Further, in finance, there is no satisfying parametric distribution which reproduces the 
properties of stock returns except that the family of stable distributions is a good candidate. In 
this regard only the densities of the normal, Cauchy, and Levy distributions have a closed 
form expression (Chaussé, 2010). 

The mathematical narrative that follows is based on Chaussé (2010). We would want a vector 
of parameters ߠ଴ ∈ ℝ௣ based on ݍ × 1 vector of unconditional moments below: 

,଴ߠ)݃]ܧ   [(௜ݔ = 0 (3.0) 

where ݔ௜  is vector of cross-sectional data, time series, or both. ߠ଴  has to be the unique 
solution to (3.0) and be an element of a compact space for GMM to produce consistent 
estimates. Higher boundary conditions of ݃(ߠ଴,  .௜) are also neededݔ

Given the linear model (3.1) in ܻ (݊ × 1) and ܺ (݊ × 1) matrices: 

 ܻ = ߚܺ +  (3.1) ݑ

The most common method of estimating the parameter ߚመ  is least squares (LS) approach by 

solving ݉݅݊ఉ||ݑ||ଶ hence the solution to the first order condition: 

 1݊ (ߚ)ݑ⊺ܺ = 0 (3.2) 

Equation (3.1) is the estimate of the moment condition of: 

൫ܧ  ௜ܺ, ൯(ߚ)௜ݑ = 0 (3.3)

The same model can be estimated by ML in which case the moment condition becomes (3.4) 
below similar to (3.8): 
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ܧ  ൤݈݀௜(ߚ)݀ߚ ൨ = 0 (3.4) 

given that ݈௜(ߚ) is the density of ݑ௜ (Baum, Schaffer, & Stillman, 2003; Baum et al., 2003; 
Baum, Schaffer, Stillman, & others, 2007; Hansen, 1982; Hansen, Heaton, & Yaron, 1996; 
Stock, Wright, & Yogo, 2002). A lot of estimation methods including LS, ML, or instrumental 
variables (IV) can also be seen as being based on such moment conditions as in (3.2), therefore, 
they are special cases of GMM (Chaussé, 2010, 2012). 

The moment condition is obtained by equating the derivatives of a log-likelihood to zero that 
MLE can be given an MM interpretation as well; (see Chaussé, 2010, 2012) for the 
relationships between GMM and IV, generalised LS, and ML, and pseudo-ML. Generally, the 
moment conditions ߠ)݃]ܧ଴, [(௜ݔ = 0 (3.0) is a vector of non-linear functions of the parameter ߠ଴ with the number of unlimited by the same parameter (Chaussé, 2010, 2012). It is, therefore, 
a step in the right direction to estimate the parameters on GLD by GMM as well as MLE in this 
paper. In order to reduce the possibility of inefficiency there is the need to increase the number 
of instruments ݍ which is often greater than ݌ rendering (3.5) with no solution. 

(ߠ)̅݃  = 1݊ ෍ ,଴ߠ)݃ ௜)௡ݔ
௜ୀଵ = 0 (3.5) 

Remedial methods for this situation are offered by Hansen (1982), with so-called two-stage 
GMM (2SGMM) in the original version of GMM, also Andrews (1991) and Newey & West 
(1987) with a heteroscedasticity and autocorrelation consistent (HAC)-like matrix. Further 
improvement to the properties of 2SGMM by Hansen et al. (1996) are the iterative 2SGMM 
(IT2SGMM) and the continuous updated estimator.  

Like the MLE, GMM estimators are easily consistent, however, efficiency bias depend on the 
choice of moment conditions (Chaussé, 2010). Though the distribution-free feature of GMM 
gives a very good appeal, it is as good as its moment conditions. 

3.2 Maximum Likelihood Estimation (MLE) 

Originally developed by R.A. Fisher in the 1920s, the principle of the MLE states that the 
desired probability distribution is the one that makes the observed data ‘most likely’, which 
means that one seeks the value of the parameter vector that maximises the likelihood function 
(3.1) where ݓ = ,ଵݓ) … ,  ௞) is parameter vector defined on a multi-dimensional parameterݓ
space and ݕ = ,ଵݕ) … ,  ௡) is a random sample data vector (Myung, 2003). It is a principle ofݕ
statistical estimation which, given a parametric model such as the GLD, prescribes choosing 
those parameters that maximises the likelihood of the sample under the model; Focardi & 
Fabozzi (2004) find this idea highly intuitive.  



Asian Journal of Finance & Accounting 
ISSN 1946-052X 

2017, Vol. 9, No. 1 

ajfa.macrothink.org 
 

234

Unlike least-squares estimation which is primarily a descriptive tool, MLE is a preferred 
method of parameter estimation in statistics and it’s an indispensable tool for many statistical 
modelling techniques, in particular non-linear modeling with non-normal data (Myung, 2003). 

Out of two possible general approaches to fitting GLD to data, according to Su (2007a); using 
the discretised method and a definite fit to the data set such as maximising the goodness of fit, 
the MLE is usually the preferred method (see King & MacGillivray, 1999). 

Let ݂(ݓ|ݕ) denote the probability density function (PDF) that specifies the probability of 
observing vector ݕ given the parameter ݓ. The likelihood function can be given as: 

(ݕ|ݓ)ܮ  = (3.6) (ݓ|ݕ)݂

For computational convenience the MLE estimate is obtained by maximising the 
log-likelihood function Myung (2003) so that the product (3.2) is transformed into a sum. 
Since the logarithm is an increasing function, maximising the likelihood or the log-likelihood 
gives the same results 

(Focardi & Fabozzi, 2004). If the sample ݕ is IID then the likelihood is the product of 
individual likelihoods: 

(ݕ|ݓ)ܮ  = ෑ ௡(ݓ|ݕ)݂
௜ୀଵ  (3.7)

Assuming the log-likelihood function ݈݊ (ݕ|ݓ)ܮ, is differentiable, if  ݓெ௅ா (MLE estimate) 
exists, it must satisfy the following partial differential equation called the likelihood equation: 

 ߲݈݊ ௜ݓ߲(ݕ|ݓ)ܮ = 0 (3.8)*

Equation (3.3) is only a necessary condition for the existence of MLE estimates. A sufficient 
condition requires that ݈݊ (ݕ|ݓ)ܮ is a maximum and not minimum. Hence the shape of the 
function be convex. Again from calculus (3.4) below must be true for ݅ = 1,2, … , ݇.  

 ߲ଶ݈݊ ௜ଶݓ߲(ݕ|ݓ)ܮ < 0 (3.8)

For further reading see (Myung 2003; Iacus 2011). 

In estimating the parameters of GLD the gld and GLDEX packages in R were employed. It is 
necessary to obtain quantiles, ߩ௜  under the RS or FMKL for every observation ݔ௜ , for ݅ = 1,2,3, … , ݊ under a set of initial values by solving (2.5) via Newton-Raphson method or 
numerically (Su, 2007b). By substituting ߩ௜’s obtained into the appropriate numerical log 
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likelihood equations (3.9) and (3.10) below:  

ோௌܮܯ  = ෍ ௡݃݋݈
௜ୀଵ ൤ ଷߣଶߣ ௜ߩ ఒయିଵ + ସߣ (1 −  ௜)ఒరିଵ൨ (3.9)ߩ

ிெ௄௅ܮܯ  = ෍ ௡݃݋݈
௜ୀଵ ൤ ௜ߩଶߣ ఒయିଵ + (1 − ௜)ఒరିଵ൨ (3.10)ߩ

The key is to maximise the likelihood in (3.5) and (3.6); this can be done through the 
Nelder-Simplex algorithm (Su, 2007b). The MLE estimates can be heavily biased but 
asymptotically consistent, efficient, and unbiased for adequately large sample size (Iacus, 
2011). 

4. Data and Terminology 

The price series of the JSE-ASI is collected daily from January 02, 2003 to December 31, 2015 
giving a total of three thousand two hundred and fifty-two data points. The log return series of 
the JSE - ASI was calculated as:  

௧ݎ  = ln(1 + ܴ௧) = ln ( ௧ܲ) − ln ( ௧ܲିଵ)  (3.11)

where ݎ௧ is the continuously compounded return (natural logarithm of the simple gross return 
of an asset). According to Tsay (2010), statistical properties of log returns are more tractable. 
For average investors, returns is a complete scale-free summary of investment prospect. 
Campbell et al. (1998) also showed that returns have more attractive statistical properties such 
as stationarity and ergodicity. A time series plot of the returns is show in Figure 2. 

 

Figure 2. A time series plot of the JSE - ASI returns from January 2003 to January 2015 
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The time series plot exhibits two regimes - 2003 to 2009 and 2010 to 2015. In the first period 
the markets returns appeared more volatile particularly towards the end of the period in 2009. 
This is contrast to the period 2010 to 2015 when the market showed moderate volatility. Such 
behaviour in financial assets in the markets has been observed by previous researchers (Assoe, 
1998; Chkili & Nguyen, 2014; Hamilton, 1989; M. R., 2001; van Norden & Schaller, 1993).  

Thus the statistical properties of the returns series will differ according to period. We therefore 
analysed the return series of the latter period of 2010 to 2015. Campbell, Lo, MacKinlay, & 
Whitelaw (1998) discuss at length the problem associated with using long-term horizon data 
series. Among others they posit the breakdown of the asymptotic inferences from such data. 
Most likely that may be due to what Hamilton (1989) identified as regime switching in the 
literature. We believe our data window more reflects the recent developments in the underlying 
economy which are transmitted to the market. 

4.1 Testing for Classical Normality Assumptions 

A test of the classical assumptions of normality looks at the first four moments of the 
distribution. The skewness and kurtosis show slight deviations from normality. The curve of 
the distribution is skewed to the left with fat-tails as the results show in the Table 1. 

Table 1. Moments of the JSE - ASI returns from January, 2003 to January 2015 

Mean Variance Skewness Kurtosis

0.0005 0.00009 -0.1701 1.4194

 
A qualitative method for testing goodness of fit is quantile-quantile (QQ) plots juxtaposed with 
empirical densities (Eberlein & Keller, 1995). The Q-Q plots alongside the histogram with the 
normal distribution curve of the log returns of the JSE-ASI provide an explicit empirical 
deviation from normality as shown in Figure 3.  
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Figure 3. Q-Q plot and Normal distribution curve of the JSE - ASI returns from January, 2003 

to January 2015 

Finally in the Jarque-Bera and Cramer-von Mises normality tests; p-values respectively are 
nearly zero thus rejecting the null hypothesis of normality (Cromwell, Labys, & Terraza, 1994; 
D’Agostino, 1986). We were, therefore, able to reach the conclusion that the returns series of 
the JSE returns were not normally distributed.  

4.2 Empirical Results from Methodology 

From the above series of tests it is obvious the return series of the JSE All Share Index 
distribution shows marked departures from normality. We thus use the Generalized Lambda 
Distribution (GLD) to fit the entire distribution - the GLD not only models the tail behaviour 
but also the entirety of the return distribution (Pfaff, 2013). We used our selected method of 
moments and maximum likelihood estimation respectively. 

4.3 Method of Moments 

The estimated parameters of the Generalized Lambda Distribution using the method of 
moments are shown in Table 2. 

Table 2: The four parameters GLD obtained from the JSE - ASI returns from January, 2003 to 
January 2015 

λ1 λ2 λ3 λ4 

0.072966 1.899254 -0.0288 0.00986

The parameters are the used to estimate the moments of the markets returns in Table 3. 
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Table 3. The four moments of GMM obtained from the JSE - ASI returns from January, 2003 
to January 2015 

Mean Variance Skewness Kurtosis

0.0522 0.9453 -0.1701 1.4193

These values compared to the moments from the normal distribution are almost the same. 
However a test of Kolmogorov-Smirnoff Distance (D) recommended by Su (2007b), gave the 
distance D = 0.97411 with a p-value of 0.1. This test has the null hypothesis that the sample 
data is drawn from the same distribution as the fitted distribution. With a p-value of 0.1, we fail 
reject the null hypothesis and conclude that the returns data came from the GLD using the 
method of moments. 

4.4 Maximum Likelihood Method 

Parametrising the GLD using the maximum likelihood method we get the values as shown in 
the Table 4. 

Table 4. The four parameters of the parameterised GLD obtained from the JSE - ASI returns 
from January, 2003 to January 2015 

λ1 λ2 λ3 λ4 

0.092051 2.037581 -0.0832 -0.01676

Using these parameters to compute the moments of the distribution we get Table 5. 

Table 5. The four moments of the parameterised GLD obtained from the JSE - ASI returns 
from January, 2003 to January 2015 

Mean Variance Skewness Kurtosis

0.055878 0.957247 -0.36028 2.520229

A test of goodness-of-fit using the Kolmogorov-Smirnoff Distance test gives D = 0.97185 with 
a p-value of almost zero which is far the 5% level of significance. Therefore, we reject the null 
hypothesis that the sample is drawn from the GLD using the maximum likelihood method. A 
graphical plot of the histograms for either method of estimation is shown in Figure 4 and Figure 
5. 
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Figure 4. A histogram of the JSE - ASI returns from January, 2003 to January 2015 obtained by 
MM 

 

Figure 5. A histogram of the JSE - ASI returns from January, 2003 to January 2015 obtained by 
MLE 

From Figure 4 and Figure 5 it is clear that using the GLD with the method of moments gave a 
histogram that closely described the entire distribution. Though the maximum likelihood 
method fairly described the data, it comes at a further computational effort making the method 
of moments more suitable for the estimation period. 

5. Conclusions 

Measuring volatility accurately has become the preoccupation of financial institutions as it 
determines their survival in increasingly turbulent markets. For tail risk measures like 
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step. Markets have swung from end to end on the volatility spectrum so violently that the 
normal distribution no longer accurately describes the entire distribution nor gives the correct 
quantiles in the tails for risk management purposes. 

We have demonstrated the use of the generalized lambda distribution as an alternative using the 
method of moments and maximum likelihood estimates in modeling the return series of the 
JSE All Share index. Overall both the method of moments and maximum likelihood methods 
describe fairly accurately the distribution of the returns.  

However, the method of moments with the Kolmogorov-Smirnoff Distance good-of-fit 
statistics and the quantile-quantile graph provides a better fit to the data. We have provided a 
basis for estimating the tail events useful in risk and portfolio management on the 
Johannesburg Stock Exchange. 
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