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Abstract 

Pop-up satellite archival tag (PSAT) technology that records depth, temperature, and 
light-level data has expanded the understanding of free-swimming behavior for numerous 
pelagic animals. Astronomical algorithms using these light-level data have allowed 
geolocation estimates of daily longitude and latitude. However, many pelagic animals have a 
crepuscular behavior pattern in which individuals are at depths below the photic layer during 
the day, thus precluding the use of traditional light-based movement algorithms for 
geolocation in such species as swordfish. A principal component analysis (PCA) of 
temperature profiles is described herein that utilizes depth and temperature data rather than 
light to estimate the horizontal movement between the initial location of tag release and 
transmission. PSAT data from swordfish (n=4), blue marlin (n=14), white marlin (n=2), and 
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black marlin (n=1) were used to generate daily coordinate estimates. The marlin data 
provided sufficient light information to derive geolocation estimates using two light-based 
state space models, while the hydrographic PCA model was used to derive comparison 
estimates. Comparisons of the two model types show an average root mean square difference 
of 175.4 km demonstrating that the PCA model can be used to extract the movement of 
tagged swordfish and other pelagic species demonstrating crepuscular behavior. Integration 
of this PCA-based geolocation methods with both the best available estimates of the ocean 
temperature at the time of tag deployment and the existing light-based geolocation models 
would provide additional information on fine-scale movement of tagged fish. 

Keywords: Geolocation, Model, Satellite tag, Swordfish, Tracking 
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1. Introduction  

Swordfish Xiphias gladius Linneaus, 1758 is a monogeneric species found circumglobally in 
tropical, subtropical, and temperate pelagic waters, where it supports numerous commercial 
fisheries (Sepulveda et al., 2010). The movement of swordfish is one of the most complex 
among pelagic fishes (Dewar et al., 2011). Previous swordfish tagging studies in the Atlantic, 
Pacific, and Mediterranean Sea have revealed large horizontal and vertical distribution 
patterns that vary considerably with season, gender, and ocean basin (Sedberry and Loefer, 
2001; Neilson and Smith, 2010; Sepulveda et al., 2010; Dewar et al., 2011). Pop-up satellite 
archival tags (PSAT) are integrated with the combined technology of satellite telemetry and 
archival data storage tags. PSATs are equipped with three sensors that record ambient 
variables including temperature, pressure (converted to depth), and light intensity at specified 
sampling frequencies. Once the tag reaches the sea surface following release from the animal, 
the stored data is automatically transmitted to an Argos satellite. The data retrieved has been 
critical to understanding the physical and physiological variables that relate fish behavior to 
its surrounding environment (Arnold and Dewar, 2001). Using electronic pop-up satellite tag 
(PSAT) technology, prior studies have shown swordfish moving against light so that during 
daylight hours they are found predominantly below the thermocline (300-1000 m), while 
night hours are spent above the thermocline in near-surface waters (Sepulveda et al., 2010; 
Lerner et al., 2013). These tagging studies also show that swordfish usually descend to depth 
one hour before sunrise and ascend after sunset. This is referred to as crepuscular diving 
behavior, and is a typical foraging strategy strongly associated with movement of the deep 
sound scattering layer (Sepulveda et al., 2010; Dewar et al., 2011).  

PSATs archive ambient light-level data, which are often used to estimate geolocation. 
However, raw geolocations derived from light-based algorithms are noisy with geolocation 
errors as large as hundreds of kilometers (see review in Nielsen et al., 2006). To reduce the 
geolocation estimation error, various mathematical methods have been coupled with the 
recorded light data to produce a relatively more accurate track. In particular, Hill and Braun 
(2001) described astronomical equations to minimize the variability of latitude estimates 
from light level-based geolocation methods. Under optimal conditions, light-based estimation 
error in latitude and longitude can be reduced to 0.7° (ca. 78 km) and 0.3° (ca. 33 km) 
respectively (Hill and Braun, 2001; Sibert et al., 2003; Nielsen and Sibert, 2007). However, 
due to the systematic and random errors associated with practical sampling of the ambient 
light signal, these light-based methods produce longitude and latitude estimates with errors 
that can still be hundreds of km (Nielsen and Sibert, 2007; Musyl et al., 2003).  

Light-based methods have also attempted to minimize error through additional ambient 
environmental data from PSATs, including sea surface temperature (SST) and bathymetry. 
State-space models have expanded to include supplementary data, such as coastline, 
bathymetry, and sea surface temperatures to constrain the model (Musyl et al., 2003; Teo et 
al., 2004; Nielsen and Sibert, 2007; Lam et al., 2010). In particular, the incorporation of 
satellite-derived sea surface temperature (SST) data has further refined light-based 
geolocation estimations. However, geolocation estimates can still have large errors (Hill and 
Braun, 2001; Lisovski, 2012). For example, Lam et al. (2011) incorporated sea-surface 
temperature (SST) into the state-space model TrackIt, which also uses light information and a 
Kalman filter. Similar to all light-based geolocation methods, TrackIt produces coordinate 
estimates usually with errors of 0.5 to 1° (ca. 60 km to 110 km) for longitude and 1° to 2° 
(ca. 110 km to 220 km) for latitude (Nielsen and Sibert, 2007). Although double-tagging 
comparisons by Lam et al. (2011) showed an increase in overall accuracy, there were larger 
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geolocation errors when the SST did not exhibit a strong thermal gradient. The most 
sophisticated models rely on distinct spatial variability of these environmental parameters to 
increase the accuracy of estimated positions. 

SST-enhanced methods do not incorporate all of the hydrographic information in the data 
transmitted from satellite tags. Data such as temperatures recorded at depths below the 
surface help describe the water column where distinct thermoclines and thermal patterns are 
revealed. For example, the thermal variability in SST can be as low as 1-2°C across the 
Florida Straits, while there is an 8-10°C change in temperatures at depth below the main 
thermocline (Leaman et al., 1989). The use of light geolocation-based models assimilated 
with such hydrographic data has been demonstrated in previous archival tagging studies. A 
study by Skomal et al. (2004) using PSAT data from basking sharks deployed in the North 
Atlantic described how the combined use of geolocation estimates and a vertical temperature 
profile analysis revealed a more extensive track than what the pop-up locations implied. 

Temperature versus depth profiles vary over geographical area and time due to ocean 
dynamics and variations in ocean forcing. As the tagged fish make their crepuscular vertical 
migrations, the tags sample the vertical distribution of temperature over the water column. In 
addition, the temperature profiles will significantly change by the fish going across a 
horizontal oceanic front. Thus, variations in daily temperature profiles can be used to track 
the movement of a fish if some information about the distribution of temperature profiles 
with latitude and longitude is known. A principal component analysis (PCA) of such thermal 
profiles will take advantage of these larger subsurface changes in temperature. By means of 
this analysis, rather than rely on the limited light records and just SST, a new model is 
proposed herein that uses temperature and depth data alone to estimate geolocation. Our 
proposed PCA-based geolocation method is sufficient as a statistical estimator since it uses 
all of the temperature versus depth data. Our method is also objective compared to the 
subjective approach of Skomal et al. (2004). 

As a statistical tool, PCA (and its various extensions) is particularly useful for analyses of 
large data sets, such as archival tag records, as it greatly reduces data volume and noise in the 
process. PCA calculates the eigenvectors of the covariance matrix of the temperature versus 
depth profiles. These eigenvectors, known as empirical orthogonal functions (EOFs), are the 
most efficient basis for representing the temperature profile data (Mariano et al., 1996). The 
daily temperature profiles are regressed onto the set of EOFs and the resulting coefficients are 
known as principal components (PCs). A simple bilinear model for the spatial distribution of 
PCs is assumed and is used to calculate daily estimates of longitude and latitude. 

2. Materials and Methods  

2.1 Satellite Tagging 

Four Microwave Telemetry high rate (HR) PTT-100 tags were deployed on swordfish caught 
and released at night during the annual Cayman Swordfish Challenge fishing tournament held 
during the spring of 2012, 2013, and 2014. Tagging was performed using methods described 
in Fenton (2012). Data from PSATs deployed on marlin in 2008, 2009, 2011, 2012 and 2013 
were reanalyzed in the comparison portion of this study. Microwave Telemetry (MWT) 
PTT-100 HR tags were rigged and deployed on blue marlin in the Caribbean as described in 
Graves and Horodysky (2005).  

Platform Transmitter Terminals (PTTs) send signals to satellites once the antennae breaks the 
surface at pop off. The data is relayed to ground stations where it is electronically transferred 
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to processing centers to be made available to researchers. These tags were programmed to 
record measurements every 90-120 seconds. The temperature sensor ranges from -4 to 40 °C 
with a resolution of 0.16 to 0.23 °C. Rated to 3000 psi, depth is recorded 0 to 1296 m with a 
resolution of 5.4 m. Unfortunately, the high sampling rate programming, including the 
increased depth resolution, results in decreased resolution in light level data due to on-board 
data storage limitations. The light sensitivity of these tags is therefore less than 4 x 10-5 lux (1 
lumen) at 555 nm and does not allow for raw geolocation estimates to be generated by the tag 
itself. To generate estimates, the light data received was run through a light-based model. 
These tags can be programmed to release for up to thirty days following activation. PTT-100 
HR tag deployments for this study ranged from 9 to 29 days.  

Mk10 and Mini-PAT popup archival tags (PATs) manufactured by Wildlife Computers 
(Redmond, Washington, USA) were deployed on blue marlin Makaira nigricans, black 
marlin Istiompax indica, and white marlin Kajikia albida (formerly Tetrapturus albidus) as 
part of the International Game and Fishing Association (IGFA) International Great Marlin 
Race (IGMR). Both tags models are pressure rated to 2000 m, and are equipped with sensors 
to record and store temperature, depth, and light data. The temperature sensors have a 
resolution of 0.05C with a range of -40 to 60C and -5 to 45C for the Mk10 and MiniPAT, 
respectively. The depth sensor of both tag models is rated to 1700 m with 0.5 m resolution. 
Light sensitivity ranges from 5x10-12 W cm-2 to 5x10-2W cm-2. The MiniPAT also includes 
two light sensors to reduce noise, each measuring at an optimum 440 nm wavelength. Both 
PAT models are optimized for post-deployment geolocation estimations. Wildlife Computers 
offers software (Wildlife Computers Global Position Estimator Version 2) that processes the 
high-resolution light records to produce global positioning estimates (GPEs). A light-based 
algorithm uses the light data collected by the tag with dawn and dusk light curves to generate 
the GPEs (Wildlife Computers 2014). The maximum length of deployment for both Wildlife 
Computers tag models is two years. The Mk10 and MiniPAT data used for this study came 
from deployments ranging from 28 to 180 days. 

2.2 Preparation of Tag Data 

Archived data are relayed in hexadecimal code by the floating PSAT through the ARGOS 
satellite system. Once the PTT-100 HR completed its transmission, data reports containing 
time-series depth, and time-series temperature are decoded, and compiled into Excel files 
(Microwave Telemetry 2013). For our analyses, the archived depth and temperature data are 
imported from .csv files into R, where the daily temperature profiles are extracted. 
Temperature and depth data from WC PAT tags are presented in histograms. Unlike the 
Microwave Telemetry PTTs, raw temperature and depth records are not given in the 
processed files. Rather, the archived temperature and depth data are compressed into data 
bins set at pre-determined sampling intervals. PAT-style depth-temperature profiles (PDTs) 
are given that consists of all temperature and depth data records for that day divided into 
eight bins of equal size. For each bin depth, a minimum, maximum, and mean temperature is 
given (Wildlife Computers 2014). In order to create a more specific temperature profile 
attributed to each day, the eight mean temperature values were interpolated in our analyses to 
generate measurements, on average, every 5 m depth.  

2.3 Geolocation Modeling 

The temperature profiles (i.e., temperature at depth values) are the input data for the 
PCA-based geolocation methods. The typical behavior of swordfish is primarily diurnal as 
they make one large vertical dive each day. Therefore, it takes one full day to get enough data 
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to estimate a vertical temperature profile. Although marlin species exhibit similar diel 
behavior, tag studies reveal much more time is spent the photic zone (0-80m) allowing 
sufficient light measurements to be recorded as well (Horodysky et al., 2007). 

A cubic spline was fit to all of the daily temperature data and for each PSAT. The spline fits 
for each day were then averaged in 5 m (marlin) or 20 m depth (swordfish data) intervals for 
each day to produce a mean T(z) profile (Figure 1). Residual temperature profiles were 
calculated by removing this mean profile from each daily profile. The covariance function of 
the temperature profiles is then calculated, with the eigenvectors of this covariance function 
known as the empirical orthogonal functions (EOFs). The corresponding eigenvalue is the 
variance explained by that mode. EOFs are the most efficient set of basis functions for 
representing the variability in the tag's temperature profiles. The original data are regressed 
onto the EOFs and the resulting amplitudes are the principal components; a simple model is 
assumed for how the principal components vary with longitude and latitude.  

The spatial distribution of the PCs is used for horizontal track estimation. The first EOF (and 
its PC) represents the most dominant pattern of variability among the vectors described by the 
vertical temperature profiles. The temporal distribution of the first PC contains most of the 
daily changes in the profiles that result from a change in location. Thus, this PCA method 
should provide an accurate description of daily movement via the changes in the first PC. The 
spatial coordinates of the PCs are known at the first and last days of tagging and the 
PCA-based geolocation method assumes a relationship between the PCs and both longitude 
and latitude. The method is detailed in next section. 

 

                   Raw Data                     Interpolated Data 

 

Figure 1. Temperature and depth data recorded by a PTT-100 HR pop-up satellite archival tag (Microwave 
Telemetry, Columbia, MD) attached to a swordfish (PTT 61665). The raw data were interpolated and 
averaged at every 20 m depth to a maximum depth of 660 m. 
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2.4 Principal Component Analysis  

A matrix Xij is created from residual temperature at the jth depth from the ith day (profile) 
specified at n depths. The vertical covariance function is calculated by multiplying the Xij by 
its transpose Xij

t. EOFs are the normalized eigenvectors of the vertical covariance function. 
The EOFs associated with the largest eigenvalues are the most efficient basis for representing 
the data (see Mariano et al., 1996). A principal component (PC) modulates the EOFs for each 
data realization; these PCs are calculated by regressing the residual temperature profiles onto 
the EOFs. The first EOF and its PCs explain more of the data variance than any other mode, 
while the second EOF and its PCs explain more of the remaining data variance than any other 
mode. After calculating the EOFs and PCs, the PCs corresponding to the first two 
eigenvectors PCi,1 and PCi,2 for each daily analysis i are examined (Fig. 2). It is shown below 
that the second EOF and its PCs explained an insignificant amount of variability, such that 
their inclusion in the analysis generally did not aid in geolocating the fish. However, there 
were a few cases where using the second PC did improve the geolocation. 

 

Figure 2. The first two vertical empirical orthogonal functions (EOFs) calculated from swordfish (PTT 
61665 left and PTT 86995 right) archival data plotted as a function of depth (in meters). The first EOFs 
have low amplitude in the mixed layer and largest amplitude in the thermocline. This result is expected 
since the vertical variability in temperature at depth is a strong function of the vertical derivative of 
temperature, which is a minimum in the maximum layer and is a maximum in the thermocline. 

 

2.5 Bilinear Algorithm 

An algorithm incorporating the PCs and the initial and final positions from the coordinates of 
tag deployment and first transmission was written to calculate the spatial distribution. This 
equation calculates the estimated coordinates for each respective day during the tag 
deployment. The vectors of known longitude and latitude are given by: 
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[
X1

Xn

] [
Y1

Yn

]

 
where X is longitude and Y is latitude and i = day 1, 2, …, n. Linearity is assumed in PCA 
due to our reliance on the original data to interpolate between individual data points. A 
bilinear system is applied to calculate the resulting coordinates as simply as possible. Both 
longitude and latitude were assumed to change linearly with PC value, so that: 

Xi = aPCi,1 + b

Yi = cPCi,1 + d
 

Each set of coefficients (a, b) and (c, d) were found by using the initial and final location. 
These coefficient sets represent the change in longitude (a, b) and latitude (c, d) over time as 
determined by the dominant vector pattern (PC1) of days 1 and n.  

a
b

= [
PC1,1 1

PCn,1 1
]-1 X1

Xn

 

c
d

= [
PC1,1 1

PCn,1 1
]-1 Y1

Yn

 

2.6 Number of Modes Evaluation 

The focus of PCA is deriving few principal components from numerous variables. Therefore, 
a primary objective is determining the number of PCs to use for the analysis versus which to 
disregard. To support the use of only the first PC (as opposed to the first two or three PCs), an 
analysis was performed using seven PTT-100 datasets incorporating both the first and second 
PCs. The algorithm to derive the spatial functions was adjusted as follows: 

Xi = aPCi,1 +bPCi,2

Yi = cPCi,1 + dPCi,2

 

so that, 

a
b

= [
PC1,1 PC1,2

PCn,1 PCn,2

]-1 X1

Xn

 

c
d

= [
PC1,1 PC1,2

PCn,1 PCn,2

]-1 Y1

Yn

 

2.7 Error Metric 

Light-based geolocation coordinate estimates were generated using two separate state-space 
models. Microwave Telemetry tags were deployed on blue marlin as part of a previous 
tagging study (Graves and Horodysky, 2010). The light records were formatted in a 
centralized tag database computer program, Tagbase (Lam and Tsontos, 2011) for input into 
the TrackIt model to generate light-based geolocations and an optimized horizontal 
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movement track.  

For the Wildlife Computers Mk10 and MiniPAT tags, a “best fit” track was created courtesy 
of Stanford University (R. Kochevar, Stanford University, pers. comm.). First, an initial track 
was generated using the Wildlife Computers WC-GPE2 software and light data to derive 
longitude, and then SST data were added to derive latitude. The subsequent estimated 
geolocations were then put through a subsequent, proprietary state-space model that uses a 
separate algorithm to establish the “best fit” estimates. A combined track then was generated 
from these estimated geolocations. The accuracy of these geolocation estimates was 
determined in previous studies, which reported an average error of 145 km (roughly 1.3 
degrees) longitude and 210 km (roughly 1.9 degrees latitude (Stokesbury et al., 2004, Teo et 
al., 2004). 

A summary of the data used for evaluating the PCA-based geolocation method is given in 
Table 1. A root mean square (RMS) metric is calculated by finding the difference between the 
daily latitude and longitude estimates from our geolcation method and the methods that are 
presently used that are described above. It should be noted that the truth data for this 
evaluation also contains large errors that contribute to the RMS metric. For each day j, RMS 
is calculated as: 

Δlat = Xgeo - XPCA 

Δlon = Ygeo - YPCA 

Latitude(Cx ) =111.12km

Longitude(Cy ) =111.12cos(lat)
 

RMSE = √(Δlat x Cx)
2(Δlon x Cy)

2 

Error calculations within 1 degree (ca. 111 km) were considered “good,” and those within 2 
degrees (ca. 222 km) considered “reasonable.” For each tag deployment, error calculated 
each day was plotted over time to determine any trends. These RMS values were then 
averaged over the course of the tagging duration and plotted over total days at large to 
determine any correlation (Figure 3 and Table 1). 

 
Figure 3. Root mean square (RMS) differences plotted according to the length of tag deployment. 
Days-at-large (DAL) ranged from 9 to 120 days. A correlation can be seen in the longer tag deployments 
yielding larger error calculations. 
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Table 1. Summary of results by species for the pop-up satellite archival tags used in the development and 
evaluation of the PCA geolocation model. The metric used to evaluate the model output for each tag 
dataset is root mean square (RMS). For species code, BUM = blue marlin, BLM = black marlin, WHM = 
white marlin, SWO = swordfish. 

Species  
Code 

Tag  
ID 

Tag  
Model 

RMS 
(km) 

Max.  
Depth (m) 

Avg.  
Depth (m) 

BUM 41333 PTT100 75.88 -356 -15 
BUM 24523 PTT100 3.52 -156 -14 
BUM 34233 PTT100 31.47 -87 -7 
BUM 84349 PTT100 193.19 -178 -19 
BUM 59080 PTT100 27.69 -237 -22 
BUM 84351 PTT100 50.27 -254 -30 
BUM 84363 PTT100 176.14 -326 -21 
BUM 35687 PTT100 130.02 -323 -28 
BUM 111212 Mk10 370.38 -216 -38 
BUM 112321 Mk10 284.74 -192 -38 
BUM 111213 Mk10 245.36 -208 -39 
BLM 111218 Mk10 213.47 -216 -38 
BUM 112322 Mk10 133.50 -224 -54 
BUM 112320 Mk10 381.01 -336 -62 
BUM 112323 Mk10 251.90 -336 -60 
WHM 126323 MiniPAT 251.72 -208 -55 
WHM 116288 Mk10 161.20 -248 -59 
SWO 61669 PTT100 N/A -506 -218 
SWO 86995 PTT100 N/A -651 -357 
SWO 61665 PTT100 N/A -756 -308 
SWO 88095 PTT100 N/A -597 -295 

 

3. Results 

The PDT data received from the PAT style tags provided a total of eight temperature and 
depth records each day. The maximum depths, determined by looking over all data given by 
the MT and PDT records, varied between 80-200 m for all marlins and between 460-600 m 
for swordfish. Our supplementary analysis showed the use of both PCs reduced error only 
43% of the time (Table 2). The total variance described by the first PC ranged from 87% to 
94%, with the second PC explaining 2% to 12% of the total variance (Table 2). This is typical 
of PCA results, which often find large variances associated with the first PC and then an 
abrupt drop-off in second and subsequent PCs. Given just the PSAT data, these results 
support our original use of only the first PC as the most efficient method for representing this 
spatial data in order to estimate fish movement. Nevertheless, preliminary assessments of 
second and subsequent PCs should be conducted for future analyses of PSAT data and 
temperature profiles from high-resolution, data-assimilative models. The reduced error in 
three of the seven trials incorporating both PCs demonstrates the potential for more than one 
PC to capture the dynamically significant temperature variance among the original data and 
subsequently provide more accurate location estimates. 
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Table 2. Root mean square (RMS) differences between two PCA geolocation model variations and seven 
datasets from pop-up satellite archival tags deployed on blue marlin in the western North Atlantic that were 
used to determine the optimal number of principal components used in subsequent analyses. 

PTT ID 
1 PC  
RMS (km) 

2 PC  
RMS (km) 

PC1  
Var. (%) 

PC2  
Var. (%) 

24523 15.3 2.6 91 7.5 

84351 55.5 95.4 87 9 

34233 40.8 34.5 90 9 

41333 75.9 83.1 88 10 

59080 27.7 42.7 94 5.2 

35687 156.5 183.9 90 6.6 

84363 192.8 181.3 89 10 

 

A total of 16 comparison tracks were generated with data from Microwave Telemetry PSATs 
(PTT-100 HR) and Wildlife Computers PATs (Mk10, MiniPAT) deployed on blue, black, and 
white marlin (Figures 4 and 5). These comparisons served to assess how well the PCA model 
works in relation to current light-based geolocation methods. The average of the daily root 
mean square (H) differences between the PCA-based geolocation method and the noisy 
“truth” estimate is 175.4 km with a standard deviation of 115.2 km (Table 1). RMS 
differences calculated each day were plotted over time for each deployment, although these 
plots did not reveal any significant trends in our results. 

The results were broken down by tag model and corresponding light-based methods to which 
our PCA model results were compared to. Light data from the seven PTT-100 HRs deployed 
on blue marlin was run through TrackIt to generate a light-based “best fit” track. The 
comparison to the PCA generated estimates yielded an average RMS difference of 86 km 
with a standard deviation of 61.9 km. Data from a total of nine Mk10s and MiniPATs 
deployed on blue marlin (n=6), white marlin (n=2) and black marlin (n=1) were used in a 
separate comparison. The “best fit” track created from these tags used a two-step process 
incorporating light geolocation data directly from tag software into a state space model 
integrating satellite imagery-derived SST values. Geolocation estimates from the SST model 
and our PCA model had an average RMS difference of 254.8 km. Four tracks were made 
from swordfish tagged and released in the Caribbean Sea near the Cayman Islands (n=3) and 
in the Florida Straits (n=1) (Figure 6).  
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Figure 4. Estimates of blue marlin tagged with Microwave Telemetry, Inc. model PTT-100 tags (n=8) as 
given by the hydrographic PCA model (open circles) and the light-based model, TrackIt (open diamonds): 
(a) PTT 24523, (b) PTT 84351, (c) PTT 34233, (d) PTT 41333, (e) PTT 84363, (f) PTT 35687, (g) PTT 
59080, (h) PTT 84349. The locations of fish release and final tag pop off are highlighted. 

e. f. 

g. h. 

a. b. 

c. d. 
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Figure 5. Coordinate estimates of marlin tagged with Wildlife Computers, Inc. model Mk10 PATs: (a) blue 
marlin 112321, (b) black marlin 111218, (c) blue marlin 111213, (d) blue marlin 112322, (e) blue marlin 
112320, (f) blue marlin 112323, (g) white marlin 126323, (h) white marlin 126288. On the left is the track 
derived from the hydrographic PCA model, while on the right are the estimates from a light-based 
state-space model that uses the tag’s raw global positioning estimates and incorporates satellite sea-surface 
temperature (SST). 

a. b. 

c. d. 

e. f. 

g. h. 
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Figure 6. Fish tracks of swordfish tagged with Microwave Telemetry, Inc. model PTT-100 tags (n=4) (a) 
PTT 61699 in the Florida Straits, and (b) PTT 61665, (c) PTT 86995, and (d) PTT 88095 near the Cayman 
Islands created from the hydrographic PCA model. The locations of fish release and final tag pop off are 
highlighted. The top image is a latitude and longitude plot with each estimate labeled numerically by day. 
The bottom image is a Google Earth map of the general track and the directions taken by the fish according 
to the PCA analysis. 
 

4. Discussion 

The PCA model described represents a relatively new approach to tracking methodology 
using electronic archival tag data. Since the development of light-based methods to generate 
global positioning of tagged individuals, many studies have aimed at improving the precision 
of these methods, but very few have deviated from them with a new technique. Those studies 
that have utilized all environmental information given by archival tags support the use of 
models such as ours that incorporate the additional hydrographic data to estimate the most 
probable tracks (Skomal et al., 2004; Neuenfeldt et al., 2004). Such methodologies 
independent of light-level data are especially valued when tracking marine organisms that 
exhibit deep-diving behavior similar to that of swordfish.  

The comparison analyses showed on average this methodology generates geolocation 
estimates within 174.3 km of the light-based models. Multiple studies have demonstrated that 
light-based geolocation can work well within this error margin (Ekstrom, 2004; Hill and 
Braun, 2001; Lam et al., 2010; Musyl et al., 2003; Nielsen et al., 2006; Nielsen and Sibert, 
2007; Shaffer et al., 2005; Sibert et al., 2003; Teo et al., 2004). Such studies were all 
performed using tags deployed on near-surface fish or with simulated data. Furthermore, their 
results reported light-based estimations of over 400 km (up to 4 degrees latitude) off the 
actual position when in temporal proximity to the equinox (Schaefer & Fuller, 2006; Lam et 
al., 2010).  
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The PCA model is a unique approach to generating coordinate estimates using temperature at 
depth data rather than light levels. As the SST-incorporated Kalman filter illustrates, 
temperature observations improve the accuracy of the light level-based model by analyzing 
movement in relation to oceanographic variability (Teo et al., 2004; Nielsen et al., 2006). In 
contrast, the PCA model allows the utilization of the entire water column rather than just the 
surface layer. Swordfish provide us with valuable data due to their large crepuscular vertical 
movements. As the tagged swordfish makes their vertical migration recording temperature 
and pressure, they allow a high rate programmed tag, such as the PTT-100’s used in this 
study, to describe an extensive temperature profile of that water column. These profiles 
attribute to the pattern of variability derived by EOF analysis needed to predict accurate 
movement from one geographic point to the next (Figure 2). The error associated with 
averaging the thermal profiles for data input is low enough to allow the analysis to capture 
the necessary temperature signals.  

Temperature and depth recordings by a tag are functions of local hydrography and movement 
activity. Much like the SST models, we are able to link the geographical positions with the 
physical environment described by the tag data (Shaffer et al., 2005). The analysis makes use 
of distinct differences in the temperature profile structures to assess how far the fish has 
moved horizontally. These observations are most effective when the temperature signal in a 
region is spatially stratified (Lam et al., 2011). Therefore the model will work best when tags 
are exposed to frontal zones where hydrographic properties vary dramatically over a 
relatively short distance. This allows the temperature profiles to exhibit a stronger signal for 
the PCA to attribute to distinct locations. Frontal regions include along shelf breaks or within 
seismic activity where thermal intrusions take place. Studies show a strong relationship 
between fronts and fish abundance (Podesta et al., 1993).  

Hand selecting the data received by the tags is a necessary step in order to ensure the 
signature of the water column, including the thermocline, is detected in our analysis. For 
instance, the marlin data selected for the comparison analysis provided deep enough dives to 
capture thermal profiles that allowed our PCA analysis to work as efficiently as possible. 
Furthermore, the initial and final thermal profiles for which the known satellite locations are 
attributed to need to be complete, e.g., not a partial dive. The pattern of variability the PCA 
uses to “locate” the fish each day is derived from the difference in these profiles. This is 
evident in our results from the PAT style tags where the binned measurements most likely did 
not allow the PCA to capture the full thermal stratification of each day.  

As the first attempt to apply this model to generate location estimates, there are limitations 
evident in our results that should be addressed in future studies. The first of which is the 
assumption that the animal is traveling in a straight path. A simple bilinear model is assumed 
for the PC distribution in space, because only two locations are definitively known. If more 
profile information is available from models, climatology, or surveys, then a more 
complicated model could be formulated for the PC distribution in space. The algorithm used 
here can be generalized given different data sources. Climatological hydrographic data, or 
output from a data assimilative, numerical ocean circulation model such as HYCOM 
(http://hycom.org), or World Ocean Database Project (www.nodc.noaa.gov) can be used to 
calculate the EOFs of the temperature profiles. Spatial maps of PCs can be constructed from 
these large datasets. These maps should therefore be used instead of SST values in the 
tracking algorithms incorporating the Kalman filter. Estimation methods should be sufficient 
by incorporating all of the data. 

A second limitation is our utilization of the tag data available to us. Ideally, a single tag 
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model and light-based method used for our comparison analysis would have provided more 
consistent results. However, the increased number of trails run allowed a more thorough 
analysis of this model’s performance. The two tag models used for this study did provide an 
opportunity to assess what data works best with our model. The tag models and respective 
light-based geolocation estimates yielded a difference of 168.8 km in average RMS 
difference values (Table 2). The PTT-100 HR tags provide the raw temperature and pressure 
(converted to depth) data at frequent intervals necessary to construct a precise vertical 
temperature profile. However, the low-resolution light data does not allow light-based models 
to work to their best ability. The PAT light data and IGFA/Stanford light-based model 
provided statistically robust geolocation estimates. However, the histrogram-style binned data 
comprised of summarized temperature and depth records limited the ability of the PCA to 
capture accurate thermal signatures. 

Those large errors associated with light-based geolocations did inhibit our ability to fully 
ground-truth the PCA method in this study. Therefore, double-tagging studies using both 
satellite telemetry tags and archival tags should be considered for future assessments of this 
model. For example, the TDR10 tag model (Wildlife Computers) is equipped with FastLoc 
technology allowing the tag to take sub-second “snapshot” of the GPS signal to take 
advantage of any brief surfacing events. The high rate PTT-100 model used in this study 
provides substantial hydrographic data from which our PCA analysis can derive effective 
coordinates. The ample data provided by archival tags coupled with the geographical 
precision of the TDR10 (within 20-75 m) would allow for direct comparisons between our 
model estimates and actual geolocations. An increased effort in sharing tag data – preferably 
from double-tagged animals —would provide a more objective way of determining the 
accuracy of this model. In addition to the gathering of more tag data, this model should be 
expanded to incorporate auxiliary environmental information. Hydrographic data can be 
accessed from expendable bathythermographs (XBTs), by profiling ARGOS floats deployed 
throughout most oceanic regions, or through free access to the World Ocean Database 
(WOD) provided by the National Oceanographic Data Center (www.nodc.noaa.gov). A PCA 
performed on temperature profiles from a high-resolution data-assimilative ocean circulation 
model would give EOF modes that better describe the pattern of thermal variability among 
the water masses sampled. The incorporation of this data into the analysis of tag data would 
generate estimations, in theory, closer to actual animal locations.  

Although methods exist to approximate light cycles from diel behavior, thus allowing the use 
of more traditional light-based geolocation models (e.g., Lam et al., 2014 for bigeye tuna 
Thunnus obesus), our PCA-based model provides an additional use for archived temperature 
data. Future studies should integrate light-level geolocation methods with our model, which 
could create an improved tracking system for animals that stay within the photic zone. 
User-friendly programs, such as Tagbase and TrackIt, have demonstrated their readiness and 
ease of incorporating additional data streams such as SST (Lam et al., 2010). The statistical 
model framework of this analysis merely requires the temperature and depth data recorded by 
PSATs be organized into daily sets. If the PCA algorithm was to be integrated either as a 
function or data export option, daily coordinate estimates based on the temperature and depth 
data rather than light levels could be easily accessed. Such an integration of comparative 
statistical methods applied to a single data set will advance the utilization of costly tagging 
operations, especially given recent funding constraints on research applied to fisheries 
management. Ultimately, an XBT survey of the study area at the time of tagging would 
provide the best data for obtaining the most accurate estimates of animal locations. 
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5. Conclusion  

In conclusion, a new PCA-based geolocation method incorporating all of the 
temperature-depth data produced reasonable daily geolocation estimates of satellite-tagged 
fish. The method utilizes all of the subsurface temperature data, which are not distorted by 
weather conditions, to provide a stronger signal for tracking. The PCs calculated using 
temperature-profiles from data-assimilative models such as HYCOM could eventually 
replace SST in the current Kalman filter geolocation methods. Integration of this PCA-based 
geolocation methods with both the best available estimates of the ocean temperature at the 
time of tag deployment and the existing light-based geolocation models would provide 
additional information on fine-scale movement of tagged fish. 
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Appendix 1. Deployment details and summary data for individual pop-up satellite archival tag (PSAT) 
datasets used in the PCA geolocation analysis. For species code, BUM = blue marlin, BLM = black marlin, 
WHM = white marlin; for geographic region of tag deployment, VZ = Venezuela, VI = Virgin Islands, NC 
= North Carolina, ZA = South Africa, POR = Portugal, MR = Morocco, US = United States, CZ = Cayman 
Islands. Also, DAL = days-at-large; ND =net displacement in km. 

Species 

Code 

Tag ID Tag  

Man. 

Tag  

Model 

Region DAL Track Duration Initial  

Lat. 

Initial  

Lon. 

Final  

Lat. 

Final  

Lon. 

ND 

BUM 41333 MWT PTT100 VZ 10 3/17/08 - 3/27/08 10.87N 67.14W 11.7N 68.28W 139 
BUM 24523 MWT PTT100 VZ 10 5/15/08 - 5/25/08 10.97N 66.97W 11.05N 67.03W 10 
BUM 34233 MWT PTT100 VZ 10 5/17/08 - 5/27/08 10.72N 67.17W 11.47N 66.8W 87 
BUM 84349 MWT PTT100 VZ 8 9/10/08 – 9/18/08 11.3N 65.77W 18.68N 64.78W 264 
BUM 59080 MWT PTT100 VZ 9 4/18/09 - 4/27/09 11.0N 67.05W 11.73N 66.59W 96 
BUM 84351 MWT PTT100 VI 10 9/11/08 - 9/21/08 18.7N 64.8W 18.2N 62.75W 197 
BUM 84363 MWT PTT100 VI 10 9/30/09 - 10/10/09 18.72N 64.78W 20.57N 66.38W 271 
BUM 35687 MWT PTT100 NC 10 6/22/08 - 7/2/08 35.07N 75.57W 38.05N 65.38W 943 
BUM 111212 WC Mk10 ZA 72 2/25/12 - 4/30/12 30.75S 31.4E 27.31S 34.4E 322 
BUM 112321 WC Mk10 ZA 32 3/30/12 - 4/25/12 29.25S 34.2E 26.12S 35.5E 558 
BUM 111213 WC Mk10 ZA 120 5/6/12 - 8/28/12 27.08S 33.6E 25.47S 34.8E 170 
BLM 111218 WC Mk10 ZA 120 5/3/12 - 8/28/12 28.71S 32.9E 25.99S 33.8E 413 
BUM 112322 WC Mk10 POR 28 8/4/12 - 8/27/12 17.1S 32.76E 15.2S 32.18E 183 
BUM 112320 WC Mk10 POR 90 8/12/12 - 11/4/12 17.4S 30.45E 24.0S 22.62E 2263 
BUM 112323 WC Mk10 POR 81 8/26/13 - 11/7/13 18.2S 32.67E 13.0S 34.68E 676 
WHM 126323 WC MiniPAT MR 32 10/15/13 - 11/5/13 9.1S 37.56E 18.3S 28.62E 1819 
WHM 116288 WC Mk10 MR 47 10/15/13 - 11/11/13 7.0S 34.4E 14.5S 35.31E 889 
SWO 61669 MWT PTT100 FL 10 12/16/11 - 12/26/11 26.77N 79.76W 30.81N 75.21W 58 
SWO 86995 MWT PTT100 CZ 10 4/1/12 - 4/10/12 19.8N 79.24W 20.42N 78.93W 77 
SWO 61665 MWT PTT100 CZ 10 4/21/13 - 4/30/13 19.8N 79.22W 19.83N 79.23W 63 
SWO 88095 MWT PTT100 CZ 30 4/12/14 - 5/13/14 19.80N 79.23W 19.6N 78.63W 68 
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