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Abstract 

The COVID-19 pandemic shocked the managerial team with unprecedented fluctuations in 

supply, demand, and transportation of goods and services. The lessons learned from the 

COVID-19 pandemic proved the urgent need for agility and flexibility in response to similar 

future crises. This paper proposes a cloud manufacturing model as a clustered supply chain 

approach that incorporates fuzzy inference systems to provide a platform for the 

post-COVID-19-economy. Cloud manufacturing is a way to standardize and increase the 

system’s reliability, and a fuzzy inference system is suited to deal with highly uncertain 

circumstances. A fuzzy inference system is integrated into a cloud manufacturing model to 

incorporate uncertainties related to Time, Quality, Cost, Reliability, and Availability in finding 

the optimum supply chain of manufacturers and service centers. The model is illustrated via a 
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simulation in the manufacturing context. The proposed approach provides a tool to address 

the uncertainties and disruptions resulting from wide-scale crises such as the COVID-19 

pandemic. 

Keywords: COVID-19 Pandemic, Cloud Manufacturing, Supply Chain, Fuzzy, Simulation 

1. Introduction 

One of the top barriers to adopting digital supply chain management is ―no sense of urgency‖ 

(Agrawal, Narain, and Ullah, 2020). With the dawn of the COVID-19 pandemic and the 

subsequent global disruptions, the need to have an agile, flexible, innovative, and 

interconnected digital supply chain management system is imminent. The pandemic has 

undermined the feasibility of production processes and endangered the output quality 

(including timeliness) for products and services. Given the intense competition and the 

drastic fluctuations in demand and supply due to the pandemic, the necessity to lower 

production and service costs while increasing the system’s reliability is evident more than 

ever. Selecting the optimal composition of manufacturing services considering the utilization 

of the unused capacity of production centers can reduce the fixed production cost. As a 

computer-assisted integrated production and service centers technology, cloud manufacturing 

is one path to this goal. Prior research shows the positive impact of cloud computing on the 

performance of supply chain networks (Willcocks, Venters, and Whitley, 2013; Cao, Dara G. 

Schniederjans and Schniederjans, 2017). In cloud manufacturing, each product development 

process is considered a service. By developing each specialized service, firms can lower costs 

while maintaining the system’s accuracy, quality, and reliability.  

Our paper proposes an integrated platform with manufacturers registered after assessment 

from impartial institutions using a fuzzy inference system to reduce uncertainties and set the 

scene for integrating all production and service processes on the national and global levels. 

Prior literature in supply chain management has benefited from fuzzy logic in optimizing 

supplier selection models (Jahani et al., 2015; Kaviani et al., 2020; Yazdani et al., 2021). 

Recent studies on the effect of the COVID-19 pandemic on supply chain management 

suggest using fuzzy logic to calculate the values of activity parameters such as time and cost 

(Hajiagha et al., 2021).  

We focus our discussion on manufacturing services, but the concepts and findings are 

generalizable to businesses and institutions. The simulation environment tests our proposed 

model of cloud manufacturing to optimize manufacturing services within several constraints 

and criteria. Manufacturing services involve a wide range of constraints, such as 

manufacturing costs, manufacturing times, end-product quality, reliability, and availability of 

resources. All these constraints will be analyzed and discussed in the simulated case offered 

in the paper. The quality of manufacturing services and resources is ranked based on a fuzzy 

inference model, and the scores are quality scores in the cloud manufacturing model.  

The remainder of the paper is as follows: discussion of cloud manufacturing as a solution to 

supply chain disruptions, proposed model, problem statement, problem objectives, problem 

boundaries, model specifications, model assumptions, objective functions, the use of 
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Meta-Heuristic Algorithms, testing the model via simulation, results and sensitivity analysis, 

and finally, the conclusion.  

2. Cloud Manufacturing: a Solution to the Supply Chain Disruptions 

Dramatic or disruptive events can create significant swings in supply and demand, which can 

likely shape firms’ behavior. The emergence of a highly contagious disease in early 2020 

quickly transformed into a pandemic that led to a deep crisis affecting all aspects of the 

economies around the world. Most countries worldwide experienced deficient industrial 

production and very high unemployment rates on the supply side. Moreover, there has been a 

significant reduction in international freight volume and trucking capacity to ship goods from 

factories to ports. As inventories run down faster, parts shortages will likely become why 

plants cannot operate fully. On the demand side, customers who have pre-booked logistics 

capacity may not use it or may compete for prioritization in receiving a factory’s output. The 

unpredictability of the timing and extent of demand rebound and rapid and profound 

fluctuations in the global demand market mean confusing signals for the near future. For 

instance, in the oil sector, the global demand will be reduced by approximately 9.5 by 2020, 

according to OPEC (Hodari, 2020).  

The unexpected global supply chain disruptions are challenges that traditional supply chain 

management systems can hardly tackle. According to event system theory (EST), in the 

presence of novel changes, the supply chain processes are altered to create coping capabilities 

for affected firms (Morgeson, Mitchell, and Liu, 2015). This paper explores integrated 

manufacturing services on a cloud platform, considering quality as a fuzzy criterion. The 

model seeks the optimum composition of a clustered supply chain in the form of a digital 

supply chain management system.  

Cloud manufacturing enables ubiquitous, convenient, and on-demand access to a shared pool 

of configurable manufacturing resources - such as manufacturing software tools, equipment, 

and capabilities
 
- that can be rapidly provisioned and released with minimal management 

effort or service provider interaction (Xu, 2012). Tao, Zhang, and Nee (2011) define cloud 

manufacturing as a service-oriented manufacturing model wherein various technologies such 

as network manufacturing, cloud computing, the internet of things, virtualization, 

service-oriented technologies, and resource management are presented within an integrated 

framework. In this framework, the business partnerships between companies in a cluster 

supply chain serve as a manufacturing service composition (Manvi & Shyam, 2014; Towers & 

Burnes, 2008). In such a clustered supply chain, suppliers of similar characteristics fall into 

the same cluster on the chain. The outcome will be a multilevel, multidimensional, 

multifunctional, and multi-objective cooperation network (Villa & Antonelli, 2009).  

In our proposal, the old goal of ―optimal cooperation for meeting the customer’s specific 

demand‖ transforms into the goal of ―finding the optimal composition from a network of 

integrated manufacturing services to meet the customers’ specific demand.‖ Our proposed 

manufacturing service composition is a three-element model: First, all the resources from all 

manufacturers (including the research and development, manufacturing services, and 

processes) are in a confined cluster supply chain called the manufacturing services, which are 
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registered and accessed through an integrated platform. Second, through the platform, 

customers communicate diverse needs (such as product type, transportation route, and macro 

and micro-service quality standards) to the manufacturers. Furthermore, a bridge between 

customers’ needs and manufacturing services results in an optimal solution for each customer 

concerning their needs (Ardagna and Pernici, 2005; Chen, Sohal, and Prajogo, 2013; Liu, Li, 

and Shen, 2014).  

The advantages of the proposed system over the traditional manufacturing systems involve 

the structure of fixed costs, the ability to adapt to rapid technological changes, the level of 

productivity and specialization, and the time needed from product development to mass 

production. Cloud computing allows suppliers to have inventory information updated 

instantly without waiting time. The efficient data processing system of cloud computing 

reduces the cycle time from order to delivery, a crucial element in the global supply chain 

network (Cao, Dara G Schniederjans, and Schniederjans, 2017). The new system does not 

require significant upfront investments and enjoys lower fixed costs. In a cloud 

manufacturing system, manufacturers can produce the product, and firms can service the 

end-user without physical infrastructure. In addition, the speed of response to rapid changes 

surrounding the firm is high. Cloud manufacturing also increases productivity through an 

integrated platform updated with all production or service units. 

Furthermore, cloud processes drastically reduce the time needed for industrializing a 

prototype. In this network, many manufacturers provide independent, responsible groups for 

the manufacturing process, and entrepreneurs can focus on devising new ideas and designs. 

Again, another benefit to the economy at the aggregate level.  

The implementation of cloud platforms is already on the agenda of the top management team 

in many companies. In a recent report by Salesforce, 750 leaders in different manufacturing 

industries worldwide identified long-lasting impacts of the COVID-19 pandemic. 

Interestingly, manufacturing leaders who feel well-prepared for the next decade already have 

most of their sales and operations in the cloud (Inside Salesforce’s New Trends in 

Manufacturing Report, 2021). The top management’s intention and effort in implementing 

cloud technology removes a significant barrier to actualizing the digital supply chain systems 

using cloud computing (Büyüközkan and Göçer, 2018; Agrawal, Narain, and Ullah, 2020). 

3. Proposed Model 

3.1 Cloud Manufacturing System with a Fuzzy Service Composition 

A cloud manufacturing system comprises some components with uncertainties related to the 

design of the system, the existing hardware, the quality of the human resource, and the 

product or service of a manufacturing or service unit. Fuzzy Logic and Fuzzy Sets express the 

inaccuracies and uncertainties in solving problems (Zadeh, 1965). These uncertainties are 

measured as fuzzy factors, such as the quality of a manufacturing unit. To this end, the output 

quality of the manufacturing unit is classified as high, average, and low based on fuzzy 

criteria. A fuzzy set is a class of members, with each member having a different membership 

degree ranging from 0 to 1. When a member’s degree of membership in a fuzzy set is 1, that 
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member is definitely part of the set. When the membership degree is zero, the member is 

definitely not a member of the set. The model seeks the optimum solution based on the 

objective function, the best combination of manufacturing units.  

3.2 Fuzzy Inference System 

A fuzzy inference system is a method in which a definite input is mapped to another definite 

output under such a system to obtain the desired result. Figure 1 depicts the system’s 

workflow, where a fuzzy inference system receives a definite input and then converts it into 

fuzzy output using expert knowledge. The decision is made using the rules and inference 

system in the next step. Next, a fuzzy set of solutions is obtained from the possible solutions 

set through a union. Finally, definite data and a definite decision are obtained through the 

defuzzification of the final solution. This system facilitates the process of modeling a 

complex set. 

 

Figure 1. Explaining a fuzzy inference system (input, Fuzzifier, expert knowledge, inference, 

Defuzzifier, and output) 

 

4. Problem Statement 

In a cloud system, everything is a service. A cloud platform consists of three components: the 

server, the cloud manager, and the client. Both suppliers and customers are constantly trying 

to increase the productivity of their operations to survive in the competitive environment. 

With the invention of cloud platforms, manufacturers and suppliers can offer all their services 

on the platform and fully utilize their spare capacities. Customers, who may also be part of 

the production chain, try to reduce costs while improving the quality of their products and 

services. Cloud platforms enable customers to post their orders and choose among the 

suppliers who offer their desired quality level and are within their limited budget. Therefore, 

cloud platforms allow suppliers and customers to fulfill their needs. This paper shows that the 

optimization feature in cloud platforms can help us navigate the current COVID-19 crisis. We 

continue our discussion of cloud platforms in a manufacturing context.  

The model needs a set of criteria and constraints that customers determine. Based on those 

criteria, the platform computes and offers the optimal composition of services (manufacturing 

services). The criteria we assume in this paper for optimizing the service providers’ 
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composition are Quality, Delivery Time, Costs, and Reliability. The end product needs to be 

delivered to the customers on time and according to the qualities demanded. The constraints 

we assume are Capacity and Availability. We assume that these constraints are excluded from 

the customer utility objective function. We use a fuzzy inference system to assess and score 

the output product quality to rank factories and estimate output product quality to be 

presented to the customers by the system. 

Although our proposed approach is demonstrated in a manufacturing setting, it is well 

extendable to the services sectors. In other words, our proposed model applies to any 

procedure with identifiable steps/sub-categories. For example, the process of air freight 

services can be divided into these simplified steps: 1) transferring the parcel from its origin to 

the departure airport, 2) transferring the parcel from the departure airport to the destination 

airport, 3) transferring the parcel from the destination airport to the regional shipping 

distribution center, and 4) shipping the parcel from the regional shipping center to the final 

destination address. Multiple qualified shipping companies and carriers can complete each of 

these steps. Each supplier has unique advantages and disadvantages in terms of time, quality, 

reliability, and cost of their services. Our proposed platform considers the supplier’s 

information and the customers’ utility function and generates an optimal operating flow for 

the desired service. In the next part, we resume the analysis and model proposition in the 

manufacturing setting. 

5. Problem Objectives 

The optimum composition of manufacturing services on the cloud platform is the overarching 

goal of the problem. Since quality and cost play a significant role in attracting customers, and 

perceived quality directly affects estimating costs, this paper tries to provide an optimal 

composition of manufacturing services to the customers depending on the demanded quality. 

Several studies measure and analyze perceived quality using fuzzy logic and fuzzy sets 

(Tsaura, Chang and Yen, 2002; Wu, Hsiao, and Kuo, 2004; Kraus, Ribeiro-Soriano and 

Schüssler, 2018; Miranda, Tavares and Queiró, 2018). Given the high uncertainty of quality 

assurance in today’s world, a fuzzy inference system estimates the output quality of each 

manufacturer. Moreover, considering the global Corona pandemic, the proposed cloud 

platform can use the spare capacity of the servers (manufacturing service providers) at the 

national and international levels to increase manufacturers’ productivity.  

In summary, our proposed system consists of the following components: First, a virtual 

manufacturing system where all machinery and movements from all manufacturing service 

providers are simulated so that the estimation of Time and Cost takes place with high 

accuracy. Second, a fuzzy inference system for assessing the quality of each factory and 

assigning a quality score ranging from 1 to 10. Third, the assignment of quality coefficients 

for factories (in the problem) is according to the fuzzy inference system, such that the output 

meets the minimum required quality. Fourth, an optimization problem to maximize customers’ 

utility based on the following six criteria: 1) Output quality, 2) Reliability of the machinery 

for estimating the failure of the end product, 3) Time, 4) Cost, 5) Capacity, and 6) Availability. 

Please refer to Table 2 for variable and parameter definitions. Among the six criteria, the first 
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four contribute to customer satisfaction and thus are part of the customer’s utility or objective 

function. The last two are goals that need to be met. 

Moreover, it is the computation of the optimum solution. This paper uses a genetic algorithm 

to solve this optimization problem. The system’s output (the proposed model) is optimal for 

manufacturing the products based on the abovementioned criteria. 

6. Problem Boundaries 

6.1 The Cloud Space Boundaries 

The cloud space has several different characteristics; hence, to accurately set the problem 

boundaries, we need to define the cloud space precisely. 

6.2 Manufacturing Cloud Space 

In the cloud space defined in this paper, we only consider manufacturing services and do not 

include other services such as design or maintenance. Using the cloud space, we simplify the 

model to receive a production process plan and product specifications. 

6.3 Decision-making Cloud Space 

The cloud space, designed in the paper, receives required information about factories enrolled 

in the cloud space from information experts and reveals the optimal manufacturing path 

based on customer requirements. These requirements are expressed by customers who do not 

interact with factories. In other words, customers only communicate their needs to the system, 

which is responsible for the decision-making. For example, the product delivered to the 

customer has one cloud space indicator, and the customer is unaware of its manufacturing 

path at the beginning.  

6.4 Virtualization of Physical Equipment 

The system completely simulates all the equipment items and the machinery movements, so 

manufacturing cost and time can be estimated with high accuracy. The estimation of Time 

and Cost requires a database that records information on: 

 Manufacturer capabilities: machinery and human resources 

 Manufacturer quality: scores and rankings based on fuzzy logic. Please refer to Table 

1 for the manufacturers’ quality scores. 

 Product reliability: based on the quality of each manufacturer’s output history. 

 Manufacturer’s Cost: Cost of production separately for each manufacturer 

 Manufacturer’s production time: obtained using the historical data on the duration of 

the production  

Table 1. Manufacturers’ quality scores 

Score 10 9 8 7 6 5 4 3 2 1 0 

Quality Rating A++ A+ A A- B+ B B- C+ C C- D 
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6.5 Services Offered by the Cloud Manufacturing Platform 

Manufacturing service: The platform offers manufacturing services to the customers 

according to the required design and manufacturing method. 

6.6 Cost Assessment Service 

The mathematical program behind the model acquires necessary information from the 

database about each production unit (factory) cost and estimates the cost of the operations for 

the new operating process.  

6.7 Reliability Assessment Service 

Similar to the previous service, the reliability of historical outputs is used to estimate the 

reliability of new products. The required data is retrieved from the database by the software 

on the platform.  

6.8 Time Measurement Service 

The platform collects information about manufacturers’ spare capacities to shorten the 

production period to a possible extent through coordinating manufacturing steps and 

assigning production tasks among several manufacturers. This level of cooperation and 

coordination is near impossible in traditional systems.  

6.9 Product Quality Assessment Service 

Throughout the product manufacturing process, the desired quality of the end product is 

assessed against the customers’ quality requirements. Factories capable of manufacturing 

products with the desired quality are identified and used in the optimum production path.  

Figure 2 provides an overview of services provided by the proposed cloud system.  

 

Figure 2. An overview of the services provided by the cloud system 

 

7. Model Specifications 

7.1 Availability 

Availability of a factory (Av) refers to the hours the factory is ready to operate during a 
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process, expressed in percentage. For example, 99% availability means that only one out of 

every hundred working hours is spent on situations wherein the machines are turned off and 

the factory is not manufacturing. The lower the rate of availability, the higher the likelihood 

of delayed order recording. Availability of services in the cloud space during time t is a 

criterion of concern. Assume ta during time slot [t1, t2] denotes the length of time that the 

cloud-based service can be successfully delivered, then the availability is calculated as 

follows (Zhou & Yao, 2017a).  

𝐴𝑣 =  
𝑡𝑎

(𝑡2− 𝑡1)
                               (1) 

7.2 Reliability 

Reliability (R) refers to executing a cloud manufacturing service successfully within a given 

time and specific condition. Including the success rate and the average failure rate of cloud 

manufacturing services, reliability is calculated as below: 

𝑅 = 𝛽1𝑅𝑠−𝑒𝑥𝑒 + 𝛽2𝑅𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒                       (2) 

Rs-exe is the successful execution rate of the requested cloud manufacturing within a specific 

time. Rs-exe is expressed as Rs-exe = Sexe(t) / E(t), where Sexe(t) is the successful execution times 

within t and E(t) is the number of times cloud manufacturing service is invoked within t. The 

average failure rate Rfailure refers to the probability that a cloud manufacturing service works 

with no failure at a particular time, and after that time, failure occurs. Rfailure, also known as 

failure rate function, is a function of t. According to (Zhou & Yao, 2017b), β1 and β2 can be 

set according to the actual situation to ensure 0 < R < 1.  

7.3 Manufacturing Cost at the Factory 

We followed (Zhou and Yao, 2017) for the calculation of the cost of operation (C) for the 

required service in a cloud system: 

𝐶 = (𝐶𝑜𝑛𝑙𝑖𝑛𝑒 + 𝐶𝑜𝑓𝑓𝑙𝑖𝑛𝑒)                         (3) 

Where, Conline is the cost of the system being online, including the cost of data transmission, 

accesses, and computations. Coffline is the cost of offline processes and includes performing 

the processes costs in a physical environment. Offline costs are determined as: 

𝐶𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = (𝐶𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 + 𝐶𝑒𝑥𝑐𝑢𝑡𝑖𝑜𝑛)                     (4) 

The offline cost is the sum of the costs for management and execution. 

7.4 Process Time in the Factory 

The process time is between registering a process in the cloud manufacturing platform and 

the delivery of the system. This time is calculated via the following equation. 

𝑇 = (𝑇𝑜𝑛𝑙𝑖𝑛𝑒 + 𝑇𝑜𝑓𝑓𝑙𝑖𝑛𝑒)                           (5) 
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Following (Zhou & Yao, 2017b), Tonline refers to the operation duration. The online time is the 

time spent from the moment the request is answered until the process is completed in the 

virtual cloud space. It is divided into two sections: process completion and transmission time. 

Tonline = (Tprocess + Ttrans)                      (6) 

Tprocess is the process completion time, and Ttrans is the transmission time in the transport 

network. Toffline refers to cloud manufacturing services performed offline in the physical space. 

The offline time is the sum of the times needed for management, waiting, and execution, 

including logistics and operation times on offline activities in the cloud system. 

𝑇𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = (𝑇𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 + 𝑇𝑤𝑎𝑖𝑡 + 𝑇𝑒𝑥𝑐𝑢𝑡𝑖𝑜𝑛)              (7) 

7.5 The Capacity of Each Factory 

Capacity refers to the maximum amount a manufacturer on the platform can produce. Note 

that capacity is different from availability, as the availability of a factory refers to the number 

of hours the factory is ready to operate during a process. In contrast, capacity refers to the 

manufacturing power to produce a product. The capacity criterion is a constraint and is not 

part of the objective function. 

7.6 Quality 

Quality refers to the degree of accuracy and accord in the end product based on the 

parameters required by the customer. Note that Quality and Reliability are two different 

concepts in our proposed model. Reliability indicates the rate of non-defect products per 

every hundred pieces manufactured and sent to the customer by a production unit 

(manufacturer). On the other hand, quality has to do with the conformity of the output quality 

with the customer’s requirements (expectations). We designed and proposed a fuzzy inference 

system to analyze and rank factories’ quality as the model’s input. This fuzzy inference 

system uses four input variables and one output variable. Input variables are manufacturing 

environment, state of the machinery, flexibility of machinery, and human resource 

skillfulness. The output variable is a number between 0 to 10, determining the quality of the 

factory (production unit on the platform), which will be used as input for the mathematical 

model we will discuss in the following section.  

The manufacturing environment deals with the proper layout for the machinery pieces and 

the factory environment’s cleanliness. The state of the machinery is gauged based on the 

machinery technology, proper installation, tuning, and performance accuracy. The flexibility 

of machinery has to do with the range and flexibility of outputs that the machinery can 

produce and the range of options it gives the operator. Human resource skillfulness deals with 

the personnel’s knowledge, expertise, efficiency, and effectiveness.  

8. Model Assumptions 

We assume all processes are sequential, and the tasks in each step are accomplishable in 

parallel. With these assumptions, there are several candidate manufacturers in each step. We 
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also assume that the factories in each step are in the same vicinity, and thus the transportation 

costs are not notably different. Therefore, this value is unchanged and separated from the 

objective function.  

9. Objective Functions 

There are two objective functions: The ultimate goal function, which seeks lower cost and 

time ratios values, and higher quality and reliability ratios. The utility function increases with 

a decrease in Time and Cost and an increase in Quality and Reliability. 

9.1 The Ultimate Goal Function 

The objective function is a normalized objective function for each variable.  

Max Z =  𝑊1 × (𝑇𝑖𝑚𝑒𝑅𝑎𝑡𝑖𝑜) + 𝑊2 × (𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑖𝑜) + 𝑊3 × (𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑖𝑜) + 𝑊4 ×

(𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑖𝑜)                              (8) 

9.2 Utility Objective Function 

𝑀𝑎𝑥 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = 𝐿𝑛(𝑇𝑖𝑚𝑒𝑅𝑎𝑡𝑖𝑜) + ln(𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑖𝑜) + 𝑒𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑖𝑜 + 𝑒𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑖𝑜 (9) 

TimeRatio is the ratio of process time to the maximum process time needed to carry out the 

process and is a value less than one. We run the model to maximize the manufacturing time 

using equation 9 with other coefficients set to zero to find the total possible time. CostRatio is 

the ratio of the cost of carrying out the process to the total cost. This ratio is always less than 

one. To find the total (or, in other words, the maximum) cost of a process, we run the model 

intending to maximize the manufacturing cost using Equation 9 with other coefficients set to 

zero. ReliabilityRatio is the ratio of the process reliability to the maximum reliability of 

performing the process, which is smaller than one. To obtain the highest possible level of 

reliability, we need to run the model to maximize reliability using Equation 9, holding other 

coefficients as zero. Finally, QualityRatio is the ratio of the process quality to the maximum 

process implementation quality. This ratio is always less than one. The numerator represents 

the process implementation quality, and the denominator represents the maximum quality of 

the process. To find the highest possible level of quality, we need to run the model to 

maximize the manufacturing quality using Equation 9 while setting other coefficients to zero. 

9.3 Constraints 

9.3.1 Operation Time 

This constraint makes sure that the operation time in each step is lower than or equal to the 

maximum time allowed for the operation for that step.   

𝑚𝑎𝑥( 𝑡𝑖𝑗𝑥𝑖𝑗) ≤ 𝑇𝑖   ∀𝑖 = 1. . . 𝐼                       (10) 

Where tij denotes the processing time of step i in factory j, and xij is the number of times 

(iterations of) operations of step i at factory j. T represents the maximum time allowed for the 

manufacturing of step i. Note that the assumption is that operations of a step can be carried 

out sequentially by one factory or parallelly at multiple factories.  
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9.3.2 Operation Cost 

Whether a factory completes a process several times or several factories complete a process 

in parallel, the operational cost is the total operational cost. 

∑ 𝑐𝑖𝑗𝑥𝑖𝑗 ≤ 𝐶𝑖
𝑀
𝐽=1     ∀𝑖 = 1. . . 𝐼                     (11) 

Where cij is the cost of operation in step i at factory j, and Ci is the total operational cost for 

step i.  

9.3.3 Availability 

Availability constraints deal with the availability of the production for step i. Given that the 

availability capability in each step can be done in parallel and each step is sequentially related 

to its next step, each factory’s iteration coefficient functions as the power (Zhou & Yao, 

2017b). The following constraint is used for availability. 

∏ 𝑎
𝑖𝑗

𝑥𝑖𝑗 ≥ 𝐴𝑖
𝑀
𝐽=1    ∀𝑖 = 1. . . 𝐼                      (12) 

In the above inequation, aij represents the extent of availability of factory j for step i, and Ai 

represents the minimum availability degree required for step i. 

9.3.4 Reliability 

Reliability constraints show whether the reliability of the production for step i is greater than 

the minimum acceptable reliability for that step. Since each step’s reliability is done in 

parallel and each step is sequentially related to its next steps, each factory’s iteration 

coefficient functions as the power (Zhou & Yao, 2017b). The following limitation is used for 

reliability: 

∏ 𝑟
𝑖𝑗

𝑥𝑖𝑗 ≥ 𝑅𝑖
𝑀
𝑗=1    ∀𝑖 = 1… 𝐼                      (13) 

Where rij denotes the reliability of factory j for step i, and Ri represents the minimum 

reliability level required for step i. 

9.3.5 Capacity 

Capacity constraint ensures that the total capacity of the service suggested by the platform is 

greater than or equal to what is needed for step i. 

∑ 𝑘𝑖𝑗𝑥𝑖𝑗 ≥ 𝐾𝑖
𝑀
𝐽=1     ∀𝑖 = 1. . . 𝐼                      (14) 

 

9.3.6 Quality 

We define a binary variable that gets one if factory j is used and 0 otherwise. In the following 

constraint, yij gets one if factory j accomplishes i
th

 activity (step i) and gets 0 otherwise. 
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𝑚𝑖𝑛( 𝑞𝑖𝑗𝑦𝑖𝑗) ≥ 𝑄𝑖    ∀𝑖 = 1. . . 𝐼                     (15) 

Equation 15 determines if, at each stage, the minimum product quality of the factory must be 

higher than the minimum quality expected by the customer at that stage. Furthermore, 

equation 16 ensures that yij gets 1 when xij is 1. 

𝑥𝑖𝑗 ≤ 𝑀𝑦𝑖𝑗     ∀𝑖 = 1. . . 𝐼, 𝑗 = 1. . . 𝐽                   (16) 

Where M is a large number.  

9.4 The Criterion-specific Maximum and Minimum Identification Function 

We need an objective function to calculate the exact value of each criterion and identify the 

maximum and minimum values of each. We used the following objective function.  

𝑚𝑎𝑥 𝑧 = 𝑊1 ∗ (∑ 𝑚𝑎𝑥( 𝑡𝑖𝑗𝑥𝑖𝑗
𝐼
𝑖=1 )) + 𝑊2 ∗ (∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝐼
𝑖=1 ) + 𝑊3 ∗ (𝑅𝑖𝑗

𝑥𝑖𝑗) + 𝑊4 ∗ (𝑚𝑖𝑛( 𝑞𝑖𝑗∀𝑖))  (17) 

The weight of each variable is determined according to the needs of each customer. For 

example, many countries face a toilet paper crisis in pandemic conditions, in which supply 

time is critical. Hence, the weight of this variable is much higher than other variables. Or in 

the case of a vaccine, its cost is of little importance, so the weight of the cost is considered 

less.  

Table 2 provides the list of definitions for variables and parameters.  

Table 2. Definitions of variables and parameters 

Parameter  Definition 

Z Objective Function value 

Wi Weight of the variable i in the objective function 

TimeRatio The ratio of process time to the maximum process time needed to carry out 

the process 

CostRatio The ratio of the cost of carrying out the process to the total cost of the 

process 

ReliabilityRatio The ratio of the process reliability to the maximum reliability of 

performing the process 

QualityRatio The ratio of the quality of performing the process to the maximum process 

implementation quality 

Utility Utility Function value 

xij The number of iterations of step i in jth factory 

yij Binary variables that get one if factory j accomplishes ith activity (step i), 

and gets 0 otherwise 

tij Process time in step i at factory j 

Ti Maximum time allowed to be spent on manufacturing in step i 

cij Cost of completing step i in factory j 

Ci Maximum allowable cost to be paid for manufacturing the product in step i 

aij The extent of availability of factory j for step i  

Ai The minimum availability degree for step i 
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rij The reliability of factory j in stage i 

Ri The minimum reliability level for step i 

kij The capacity of factory j in stage i 

Ki  Minimum capacity required for step i 

qij Quality of factory j for step i 

Qi Minimum quality required in step i 

M Very large number 

 

10. The Use of Meta-Heuristic Algorithms 

As the number of manufacturing steps and service providers in each step increases, the 

number of candidates for a composition of manufacturing services increases drastically. The 

mathematical model that the proposed cloud manufacturing platform needs to solve is an 

example of NP-Hard models; in such models, the solution time increases exponentially as the 

number of variables increases. Therefore, we need improved optimization methods such as 

meta-heuristic algorithms to solve complex mathematical problems and find the desired 

solution. Otherwise, finding the optimal manufacturing path will be highly time-consuming. 

The genetic algorithm is among the meta-heuristic algorithms practitioners and academicians 

use in many problems, especially in optimizing cluster supply chains (Wang, Makond, and 

Liu, 2011). The advantage of this algorithm is the ability to work with integer forms and find 

a near-optimal solution.  

11. Testing the Model - Simulation 

This section tests the proposed model in a simulated environment where the product of 

interest is the ―toolbox.‖ The proposed cloud manufacturing system requires three phases: 1) 

constructing the manufacturers’ database, 2) receiving an order from customers, and 3) 

incorporating customers’ requirements. 

Phase 1) Construction of manufacturers’ database 

This dataset records: 1) The machinery type and quantity; 2) The factory output quality; 3) 

The end product reliability; 4) The manufacturing cost for one working day in the factory; 5) 

The manufacturing capacity of one working day in the factory. 

Experts measure the quality of the manufacturing environment and pieces of machinery and 

the level of personnel’s skills and competencies to assess the factory output quality using the 

designed fuzzy inference system. 

Phase 2) Ordering the product 

11.1 Sub-operations 

The customer enters production orders of 500 products within a maximum period of d days 

and with a certain level of quality (for example, A-, which equals a score of 7 in our system) 

at a maximum cost of C per unit. Please refer to tables 18 to 22 for the customer’s order 

assumptions.  
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This step will determine the sub-operations needed to produce one unit of the ordered product. 

In our simulation, we assumed that manufacturing a toolbox requires eight sub-operations. 

Table 3 summarizes the number of factories running these sub-operations in the simulation. 

Table 3. Number of factories per sub-operation in the simulation problem 

  Sub-operations 

 1 2 3 4 5 6 7 8 

Number of factories 6 3 5 6 3 8 5 9 

 

11.2 Execution Time 

Operation time is the duration of one round of operations in a factory according to its capacity. 

Table 4 tabulates the operation time for each sub-operation at different factories in the 

simulation. We need to emphasize that factories are independent of each other in each step, 

such that Factory 2 in sub-operation 1 is not necessarily the same in sub-operation 2. Here, M 

refers to the absence of the given factory. Hence, it could be set to a very large value. 

Table 4. Execution time for each sub-operation in each factory 

  Sub-operations 

 1 2 3 4 5 6 7 8 

Factory 1 6 15 8 4 43 4 3 4 

Factory 2 5 13 12 3 24 5 3 4 

Factory 3 8 10 20 6 67 3 8 6 

Factory 4 3 M 15 8 M 4 7 8 

Factory 5 5 M 8 2 M 4 6 7 

Factory 6 4 M M 4 M 5 M 6 

Factory 7 M M M M M 2 M 9 

Factory 8 M M M M M 4 M 3 

Factory 9 M M M M M M M 4 

 

11.3 Cost of Operations 

The cost of operation j
th

 in the factory i
th

 is listed in Table 5. This cost is related to a period 

with a specified capacity. 
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Table 5. Cost of operations in each factory 

  Sub-operations 

 1 2 3 4 5 6 7 8 

Factory 1 12 24 50 56 89 23 87 19 

Factory 2 41 34 45 60 101 38 98 14 

Factory 3 32 54 23 32 95 47 65 16 

Factory 4 65 M 40 70 M 38 43 18 

Factory 5 25 M 55 40 M 47 37 24 

Factory 6 65 M M 19 M 29 M 24 

Factory 7 M M M M M 64 M 10 

Factory 8 M M M M M 57 M 23 

Factory 9 M M M M M M M 27 

 

11.4 Quality of Operations 

Experts assess different quality criteria to calculate the quality of each factory. In order to 

achieve the quality of each operation in each factory, a fuzzy inference system has been used. 

The system takes in the values of 1) quality of tools, 2) quality of the workforce, 3) quality of 

machines, and 4) quality of work environment from experts and returns the output value to 

the optimization problem. Input values are generated randomly by the author and assumed to 

be the experts’ input in the fuzzy inference system. Please refer to tables 6 to 14 for the input 

and output values. We use MATLAB to program the fuzzy inference system with the 

following specifications: 

Name='ranking' 

Type='mamdani' 

Version=2.0 

NumInputs=4 

NumOutputs=1 

NumRules=30 

AndMethod='min' 

OrMethod='max' 

ImpMethod='min' 

AggMethod='max' 

DefuzzMethod='centroid’ 
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Table 6. Quality assessment in factories related to the 1st operation 

 Factories 

 1 2 3 4 5 6 7 8 9 

Environment 10 8 7 8 8 3    

Machine Quality 7 7 8 7 7 8    

Tools Quality 5 6 9 8 6 9    

Human Skills 9 4 5 9 5 6    

Quality Score 7.68 6.68 7.07 8.24 6.77 5.1    

 

Table 7. Quality assessment in factories related to the 2nd operation 

 Factories 

 1 2 3 4 5 6 7 8 9 

Environment 8 9 9       

Machine Quality 7 9 6       

Tools Quality 8 10 7       

Human Skills 7 6 8       

Quality Score 7.44 8.67 7.68       

 

Table 8. Quality assessment in factories related to the 3rd operation 

 Factories 

 1 2 3 4 5 6 7 8 9 

Environment 9 8 7 8 9     

Machine Quality 7 7 8 7 6     

Tools Quality 6 9 4 6 8     

Human Skills 8 8 9 7 7     

Quality Score 7.68 8.39 7.02 7 7.63     

 

Table 9. Quality assessment in factories related to the 4th operation 

 Factories 

 1 2 3 4 5 6 7 8 9 

Environment 8 6 10 4 9 5    

Machine Quality 7 6 8 6 8 4    

Tools Quality 6 8 10 9 8 6    

Human Skills 8 7 10 9 6 9    

Quality Score 7.4 6.8 9.38 7.03 7.11 6.79    
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Table 10. Quality assessment in factories related to the 5th operation 

  Factories 

 1 2 3 4 5 6 7 8 9 

Environment 8 5 10       

Machine Quality 7 8 9       

Tools Quality 5 9 10       

Human Skills 6 9 9       

Quality Score 6.83 8.47 9.11       

 

Table 11. Quality assessment in factories related to the 6th operation 

 Factories 

 1 2 3 4 5 6 7 8 9 

Environment 9 8 9 8 9 9 10 9  

Machine Quality 7 9 10 9 9 8 10 9  

Tools Quality 10 9 8 10 8 10 10 9  

Human Skills 9 10 8 7 10 10 10 9  

Quality Score 9.11 8.73 8.58 8.16 8.69 9.32 9.39 8.75  

 

Table 12. Quality assessment in factories related to the 7th operation 

 Factories 

 1 2 3 4 5 6 7 8 9 

Environment 5 8 7 9 9     

Machine Quality 6 9 8 6 3     

Tools Quality 7 6 9 5 9     

Human Skills 8 4 5 9 7     

Quality Score 6.75 7 7.07 7.13 5.74     

 

Table 13. Quality assessment in factories related to the 8th operation 

 Factories 

 1 2 3 4 5 6 7 8 9 

Environment 5 7 6 6 5 9 8 9 9 

Machine Quality 8 8 8 9 7 7 7 6 8 

Tools Quality 4 8 7 7 8 6 9 8 9 

Human Skills 9 9 6 5 9 10 8 7 5 

Quality Score 7 8.21 6.87 7 7.95 7.54 8.39 7.63 7.14 
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Table 14. Fuzzy inference system output related to the quality of each factory 

  Sub-operations 

 1 2 3 4 5 6 7 8 

Factory 1 7.68 7.44 7.68 7.4 6.83 9.11 6.75 7 

Factory 2 6.68 8.67 8.39 6.8 8.47 8.73 7 8.21 

Factory 3 7.07 7.68 7.02 9.38 9.11 8.58 7.07 6.87 

Factory 4 8.24 0 7 7.03 0 8.16 7.13 7 

Factory 5 6.77 0 7.63 7.11 0 8.69 5.74 7.95 

Factory 6 5.1 0 0 6.79 0 9.32 0 7.54 

Factory 7 0 0 0 0 0 9.39 0 8.39 

Factory 8 0 0 0 0 0 8.75 0 7.63 

Factory 9 0 0 0 0 0 0 0 7.14 

 

Phase 3) Assessing customer demands 

11.5 Demanded Quality 

The customer requested quality A-, which is the same as a score of 7 or higher. 

11.6 Demanded Capacity 

The capacity requested by the customer is 500 units. Table 15 summarizes the capacity of 

factories for each sub-operation, considering the inventory levels in manufacturing steps. 

Table 18 shows the minimum capacity required per operation. 

Table 15. Capacity of factories (units of products) 

  Sub-operations 

 1 2 3 4 5 6 7 8 

Factory 1 200 350 500 400 350 300 400 300 

Factory 2 300 300 400 600 600 650 650 450 

Factory 3 600 500 300 450 450 350 300 500 

Factory 4 800 0 600 700 0 450 600 350 

Factory 5 650 0 600 550 0 550 750 350 

Factory 6 870 0 0 500 0 500 0 400 

Factory 7 0 0 0 0 0 600 0 550 

Factory 8 0 0 0 0 0 500 0 570 

Factory 9 0 0 0 0 0 0 0 600 

Table 18. Minimum capacity required per operation 

 Sub-operations 

 1 2 3 4 5 6 7 8 

Capacity 480 500 450 420 500 500 480 500 
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In order to ensure timely delivery of the output, the system needs to estimate the availability, 

the maximum process time, and the reliability of each process’s parameters and integrate 

them all in the optimization process on the cloud platform. The cloud manager provides these 

estimates. 

11.7 Demanded Reliability 

Demanded reliability by the customer is 93%. Table 16 summarizes the reliability of factories 

for each sub-operation, considering the inventory levels in manufacturing steps. Table 19 

tabulates the minimum reliability required per operation. 

Table 16. Reliability of factories 

  Sub-operations 

 1 2 3 4 5 6 7 8 

Factory 1 100% 100% 99.97% 99.95% 99.99% 95% 99.95% 99.99% 

Factory 2 99.99% 99.97% 99.93% 99.50% 99% 99.99% 100% 99.95% 

Factory 3 99.98% 99.95% 99.85% 99.99% 98.50% 99.95% 99.99% 100% 

Factory 4 99.99% 0 100% 100% 0 99.50% 99.25% 99.30% 

Factory 5 98.98% 0 99.25 99.96% 0 100% 99.99% 96.50% 

Factory 6 100% 0 0 99.35% 0 99.45% 0 99.99% 

Factory 7 0 0 0 0 0 100% 0 99.60% 

Factory 8 0 0 0 0 0 99.99% 0 99.65% 

Factory 9 0 0 0 0 0 0 0 99.95% 

 

Table 19. Minimum Reliability required per operation 

  Sub-operations 

 1 2 3 4 5 6 7 8 

Reliability  98% 97% 99% 95% 96% 95% 94% 93% 

 

11.8 System Availability 

The availability per operation is determined considering the delivery time and capacity. Table 

17 summarizes the availability of factories for each sub-operation, considering the inventory 

levels in manufacturing steps. Table 20 shows the minimum availability required per 

operation. 
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Table 17. Availability of factories 

  Sub-operations 

 1 2 3 4 5 6 7 8 

Factory 1 99% 98% 99/98% 97% 95% 97.98% 96.60% 95.50% 

Factory 2 95.60% 99.75% 98% 98.50% 97% 99.99% 100% 93% 

Factory 3 97.60% 97.85% 99% 96.70% 98.95% 97.55% 98.90% 100% 

Factory 4 96.50% 0 98.98% 95.57% 0 98.56% 96% 94% 

Factory 5 95.77% 0 96.90% 93.94% 0 99.50% 99.95% 98.40% 

Factory 6 94.95% 0 0 95.50% 0 93.90% 0 93.50% 

Factory 7 0 0 0 0 0 99% 0 98.50% 

Factory 8 0 0 0 0 0 100% 0 99.50% 

Factory 9 0 0 0 0 0 0 0 95.70% 

 

Table 20. Minimum availability required per operation 

  Sub-operations 

 1 2 3 4 5 6 7 8 

Availability  98% 98% 98% 99% 97% 96% 97% 95% 

 

11.9 Requested Delivery Time 

The time of completing each step, the delivery time, is shown in Table 21. 

Table 21. Maximum Time available for each operation 

  Sub-operations 

 1 2 3 4 5 6 7 8 

Time  7 20 18 10 90 10 12 12 

 

11.10 Requested Cost 

According to the total requested cost, the cost of each operation is calculated and shown in 

Table 22.  

Table 22. Maximum Cost available for each operation 

  Sub-operations 

 1 2 3 4 5 6 7 8 

Cost  100 120 70 65 150 70 100 50 

 

Phase 4) Problem-solving 
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11.11 Determining the Denominators of Ratios 

As explained in the previous section, first, we calculate the maximum value of each variable 

using Equation 17, which results in the maximum values of 97 days, 593 units’ cost, 7.13 

quality out of quality coefficient of 10, and 0.98931 reliability out of reliability coefficient of 

10.  

This problem’s two objective functions are optimized utilizing the roulette method, and the 

results are according to the optimal state of each function. Note that the value of the objective 

function of optimization of ratios does not have a special meaning, and its only goal is to 

optimize existing ratios. The solution after 500 iterations is as below: 

𝑋 =  

⌈
⌈
⌈
⌈
⌈
⌈
⌈
 
 0 0 0 1 0 0 0 0 0 
 0 0 1 0 0 0 0 0 0 
 1 0 0 0 0 0 0 0 0 
 0 0 0 0 1 0 0 0 0 
 0 1 0 0 0 0 0 0 0 
 0 0 0 0 0 1 0 0 0 
 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 ⌉

⌉
⌉
⌉
⌉
⌉
⌉
 

 

 

Table 23 provides the weights of each variable in the initial objective function. We should 

reiterate that these weights reflect an example of the customers’ preferences. Depending on 

the importance and superiority of the four variables of Quality, Reliability, Cost, and Time, 

our proposed model produces an optimized plan tailored to the customer’s desires. Table 24 

shows the answers for each parameter that optimizes the initial objective function. Table 25 

summarizes optimal ratios based on optimization of the objective function. Figure 3 shows 

the problem’s solution after 500 iterations. 

Table 23. Weights of the variables in the objective function 

Variable Quality Reliability Cost Time 

Weight 0.1 0.1 0.4 0.4 

 

Table 24. Answer based on various parameters to optimize the initial objective function 

 First Run Second Run Third Run Fourth Run 

Gamma 0.3 0.3 0.6 0.8 

Mutation Percentage 0.3 0.3 0.3 0.3 

Crossover Percentage 0.8 0.8 0.8 0.8 

Mutation Rate 0.02 0.1 0.1 0.1 

Population Size 1000 1000 1000 1000 

Value of Utility Function 0.83629 0.87119 0.87119 0.87119 

Value of Objective Function -0.3369 -0.3303 -0.3303 -0.3303 
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Table 25. Optimal ratios of variables based on optimization of the objective function 

Variable Quality Reliability Cost Time 

Ratio 0.98794 0.99719 0.68297 0.63918 

 

Figure 3. Finding the problem solution after 500 iterations 

 

Now we optimize the utility function of the customer using the roulette method. The utility 

function is determined based on the customer’s needs, and a higher utility function reflects 

higher customer satisfaction. The model parameters are the same, except that the goal is to 

optimize the customer’s utility. 

We set the coefficients for ln (TimeRatio) and ln (CostRatio) to 3, and exp (ReliabilityRatio) 

and exp (QualityRatio) to one. Table 26 shows the results of different runs based on 

optimization of the utility function. In this table, the number of iterations for different 

parameters is tabulated. Following, we will focus on the ratios from the best solution. 

Table 26. Results of different runs based on optimization of the utility function 

 First Run Second Run Third Run Fourth Run 

Gamma 0.3 0.3 0.6 0.8 

Mutation Percentage 0.3 0.3 0.3 0.3 

Crossover Percentage 0.8 0.8 0.8 0.8 

Mutation Rate 0.02 0.1 0.1 0.1 

Population Size 1000 1000 1000 1000 

Value of Utility Function 0.83629 0.83629 0.87119 0.87119 

Value of Objective Function -0.3536 -0.3536 -0.3303 -0.3303 
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Table 27 summarizes the final solution by tabulating the optimal ratios of variables based on 

optimizing the utility function. The problem specifications are the same as the previous 

objective function. Figure 4 shows the problem’s solution after multiple iterations of 

optimization. 

Table 27. Optimal ratios of variables based on the optimization of the utility function 

Variable Quality Reliability Cost Time 

Ratio 0.98794 0.99719 0.68297 0.63918 

 

Figure 4. Obtaining the desired solution after multiple iterations of the algorithm 

 

12. Results and Sensitivity Analysis 

The objective function of the problem seeks to improve customer satisfaction, and its value is 

not significant. We use MATLAB for simulation and solving the optimization problem. As 

mentioned above, we test our proposed cloud manufacturing model by simulating the 

production of a specific toolbox that involves eight manufacturing steps (sub-operations). We 

assume that several factories can perform the required operations in each step. In this section, 

we are conducting a sensitivity analysis of the solution by varying the parameters of the 

optimization function. We run two iterations for each objective function by alternating the 

weights, and we summarize the results as follows. The two iterations serve as random 

examples of possible customers’ preferences and are used as input for our proposed model.   

First, we change the weights to 45% for quality, 45% for reliability, 5% for cost, and 5% for 

time. Table 28 summarizes the weights for each variable in the objective function. Table 29 

tabulates the results of maximizing the utility function.  
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Table 28. Weights of the variables in the objective function 

Variable Quality Reliability Cost Time 

Weight 0.45 0.45 0.05 0.05 

 

Table 29. Results based on maximizing the utility function 

 First Run Second Run Third Run Fourth Run 

Gamma 0.8 0.9   

Mutation Percentage 0.3 0.3   

Crossover Percentage 0.8 0.8   

Mutation Rate 0.1 0.1   

Population Size 1000 1000   

Value of Utility Function 2.4738 2.4738   

Value of Objective Function 0.8277 0.8277   

 

The optimal state using optimization of the utility function is as follows: 

𝑋 =  

⌈
⌈
⌈
⌈
⌈
⌈
⌈
 
 0 0 0 1 0 0 0 0 0 
 0 0 1 0 0 0 0 0 0 
 1 0 0 0 0 0 0 0 0 
 0 0 1 0 0 0 0 0 0 
 0 1 0 0 0 0 0 0 0 
 0 0 0 0 0 1 0 0 0 
 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 ⌉

⌉
⌉
⌉
⌉
⌉
⌉
 

 

Table 30 summarizes the results of the optimization of the objective function. The optimal 

solution from optimization of the objective function is as follows: 

𝑋 =  

⌈
⌈
⌈
⌈
⌈
⌈
⌈
 
 0 0 0 1 0 0 0 0 0 
 0 0 1 0 0 0 0 0 0 
 1 0 0 0 0 0 0 0 0 
 0 0 1 0 0 0 0 0 0 
 0 1 0 0 0 0 0 0 0 
 0 0 0 0 0 1 0 0 0 
 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 ⌉

⌉
⌉
⌉
⌉
⌉
⌉
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Table 30. Results based on objective function optimization 

 First Run Second Run Third Run Fourth Run 

Gamma 0.8 0.8 0.9  

Mutation Percentage 0.3 0.3 0.3  

Crossover Percentage 0.8 0.8 0.8  

Mutation Rate 0.02 0.1 0.02  

Population Size 1000 1000 1000  

Value of Utility Function 2.47 2.4738 2.4738  

Value of Objective Function 0.82487 0.8277 0.8277  

 

Optimal ratios are 99.12% for Quality, 100% for Reliability, 67.62% for Cost, and 69.07% for 

Time. Table 31 shows the optimal ratios of variables based on optimizing the utility function. 

Figure 5 pictures the schematic analysis of the results. The optimized utility results in a 

manufacturing plan showing the optimal selection and order of each step. In our example of 

eight steps/sub-categories in producing the optimal product, our model suggests factories 4, 3, 

1, 3, 2, 6, 4, and 9 for steps 1 through 8 of the manufacturing process. 

Table 31. Optimal ratios of variables based on the optimization of the utility function 

Variable Quality Reliability Cost Time 

Ratio 0.9912 1 0.6762 0.6907 
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Figure 5 – Schematic analysis of the result 

Second, we change the weights to 25% for quality, 25% for reliability, 25% for cost, and 25% 

for time. Table 32 summarizes the weights for each variable in the objective function. Table 



Business and Economic Research 

ISSN 2162-4860 

2022, Vol. 12, No. 4 

http://ber.macrothink.org 27 

33 tabulates the results of maximizing the utility function. The optimal state using 

optimization of the utility function is as follows: 

𝑋 =  

⌈
⌈
⌈
⌈
⌈
⌈
⌈
 
 0 0 0 1 0 0 0 0 0 
 0 0 1 0 0 0 0 0 0 
 1 0 0 0 0 0 0 0 0 
 0 0 1 0 0 0 0 0 0 
 0 1 0 0 0 0 0 0 0 
 0 0 0 0 0 1 0 0 0 
 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 ⌉

⌉
⌉
⌉
⌉
⌉
⌉
 

 

Table 34 tabulates optimal variables ratios based on the utility function’s optimization. In the 

optimal state ratios are: 98.79% for Quality, 99.72% for Reliability, 68.30% for Cost, and 

63.92% for Time. 

 

Table 32 - Weights of the variables in the objective function 

Variable Quality Reliability Cost Time 

Weight 0.25 0.25 0.25 0.25 

 

 

Table 33 - Results based on utility function optimization 

 
First Run Second Run Third Run Fourth Run 

Gamma 0.8 0.9   

Mutation Percentage 0.3 0.3   

Crossover Percentage 0.8 0.8   

Mutation Rate 0.1 0.1   

Population Size 1000 1000   

Value of Utility Function 1.5563 1.5563   

Value of Objective Function 0.16575 0.16575   

 

The second iteration of the variable weights shows a different optimal selection and order of 

each step compared to the first iteration of weights. In other words, our model changes the 

choice of the last factory from 9 to 8 and generates the flow of factories 4, 3, 1, 3, 2, 6, 4, and 

8 for steps 1 through 8 of the manufacturing process when all four variables are equally 

important. 

 

Table 34 - Optimal ratios of variables based on the optimization of the utility function 

Variable Quality Reliability Cost Time 

Ratio 0.98794 0.99719 0.68297 0.63918 

 

Table 35 summarizes the results of the optimization of the objective function. Figure 6 is the 

schematic view of the result. As seen in the tables above, the solution equals the previous 
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objective function. 

As illustrated, an increase or decrease in the weight of each criterion in the objective 

functions changes the optimal path. The two random examples illustrate the model’s 

flexibility in suggesting optimal routes tailored to customers’ needs and preferences. 

Considering the customer’s demand and the degree of importance of each criterion in the 

customer utility function, our model proposes a different path for the customer to maximize 

customer utility. For example, the optimal path for factory selection changes as the weight of 

Quality and Reliability grows.  

Table 35 - Results based on objective function optimization 

 
First Run Second Run Third Run Fourth Run 

Gamma 0.8 0.9   

Mutation Percentage 0.3 0.3   

Crossover Percentage 0.8 0.8   

Mutation Rate 0.1 0.1   

Population Size 1000 1000   

Value of Utility Function 1.5563 1.5563   

Value of Objective Function 0.16575 0.16575   

 

Figure 6. Schematic analysis of the results 

 

13. Conclusion 

The COVID-19 pandemic has created an unstable environment, and the only certainty is the 
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possibility of similar crises that will continue shocking global operations and create 

uncertainties in supply chains. Climate change, seasonal storms, widespread wildfires, and 

wars, to name a few, will create similar disruptions and intensify fluctuations in supply and 

demand. Therefore, the readiness for change, standardization of activities, and smartening of 

all processes with technology become inevitable ingredients in strategic planning for all 

players in the supply chain system. 

We propose that cloud manufacturing is an approach to navigating the current disruption in 

supply chain and manufacturing activities. The proposed clustered supply chains are 

interconnected parallelly and sequentially on a smart cloud platform coupled with a fuzzy 

inference system. The fuzzy approach is adopted to conduct a qualitative analysis of all 

suppliers/factories. The system then uses a mathematical program that incorporates the 

suppliers’ qualitative scores and customer requirements for utility maximization.  

Overall, the numerous benefits of our proposed model help create a more sustainable supply 

chain system. There are, however, some limitations that are important for consideration. 

Changing laws and government restrictions are challenging variables to be incorporated into 

the model. However, these uncertainties can be addressed indirectly by incorporating 

reliability or transportation costs. Measuring the quality of factories is also a challenge in 

implementing the proposed model, which is overcome by using the fuzzy inference system. 

In other words, the fuzzy inference system generates a quality score for each supplier using 

experts’ opinions on the quality of suppliers’ manufacturing environment, labor skills, and 

machinery condition and flexibility. The resulting quality score is then incorporated into the 

process of generating the outcome of the optimal objective function. In addition, the security 

of information shared in a cloud platform, especially in multinational supply chains, is a 

significant concern of the participants (Marston et al., 2011). Future researchers can also add 

to this area of knowledge by adding transportation time and cost to the models. Moreover, 

alternative meta-heuristic or heuristic algorithms could study the solution. Comparing our 

algorithm’s efficiency with other methods is another avenue for further exploration.  
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