Public Investment, Private Investment, and Labor Productivity in Nepal: A Cointegration and VECM Analysis

Pranick Raj Chamlagai

Department of Economics, Trinity College, Hartford, Connecticut 06106, United States

Miguel D. Ramirez (Corresponding author)

Department of Economics, Trinity College, Hartford, Connecticut 06106, United States Tel: 1-959-200-6935. E-mail: pranick.chamlagai@trincoll.edu

 Received: June 6, 2023
 Accepted: November 7, 2023
 Published: November 17, 2023

 doi:10.5296/ber.v13i4.21471
 URL: https://doi.org/10.5296/ber.v13i4.21471

Abstract

The main objective of this paper is to analyze the impact of public and private investment on labor productivity in Nepal using time series data from 1991-2021. By employing the Zivot-Andrews single break unit root test and Johansen cointegration analysis, a long-run stable relationship is found among public investment, private investment, and labor productivity. A VECM model is estimated to find that both public and private investment have a positive impact on labor productivity with a more significant and strong impact coming from the private investment in the long run. The nature of labor productivity and public investment is found to be endogenous and that of private investment is found to be weakly exogenous. Additionally, a Granger Causality Test is performed and the result shows that labor productivity and private investment cause public investment. To test the causation from public investment to labor productivity, a Pairwise Granger Causality Test is done and it is found that public investment causes labor productivity only at lags of 4 and 5 which confirms that public investment takes time to impact the labor market conditions. Policy implications are discussed.

Keywords: Cointegration analysis, Vector error correction model, Granger block causality, Public investment, Zivot-Andrews test

JEL codes: C22, H54, O53

1. Introduction

Economic theory suggests that investment has a big impact on labor productivity and the overall economic growth of a country. Broadly, there are two types of investments – public and private. Public investments are the investments made by the government that mostly happen in sectors of national importance like infrastructure, education, health etc. Private investments are the investments from the private sector which are mostly motivated by profit opportunities for the private entity which generally trickles down to create an overall impact on the economy. Public and private investments can sometimes be complements and sometimes be substitutes. So, it is highly necessary to have a better understanding of the impact private and public investments have on labor productivity before making many national-level policy decisions.

Development economists consider labor productivity as one of the major factors that impact the long-run economic growth of a country. Studies have shown that human capital accumulation and economic growth are intimately related (Topel, 1999). Other studies have shown that investments are mostly associated with technological progress which indeed raises labor productivity (Grazzi, Jacoby & Treibich, 2016). In that regard, it is evident that most developing countries do not have high labor productivity due to lack of skilled workers and lack of technological progress. The investments that the government and the private sector make in developing countries are theoretically supposed to increase the productivity of labor, but this has not always been the case. Studies have shown that there are other factors like infrastructure governance and changes in workforce demographics that determine the effectiveness of public investment in raising labor productivity and overall economic growth (Miyamoto et al., 2020; Vandenbroucke, 2017). So, the dynamics of labor productivity is mostly driven by investments but have other secondary factors like infrastructure governance and demographics impacting it. Considering this, we chose to study the primary factors that impact labor productivity - public and private investments.

Most studies that have been done on the impact of public and private investment spending on labor productivity are focused on advanced economies or regions (high-income countries or sectors). There are only a few studies focused on country-level analysis for developing countries and there is none for Nepal. For a developing country like Nepal, it is highly important to understand and quantify the impact of public and private investments to create more focused policies that will help bring in more investment into the country and contribute to increasing labor productivity. The lack of any study on the impact of public and private investment on labor productivity in Nepal motivated us to base our study on Nepal.

In this paper, we aim to investigate the relationship among public investment, private investment, and labor productivity in Nepal. The aim of the paper is also to understand if public investment and private investment have actually helped raise labor productivity or not in the case of Nepal using time series data from 1991 to 2021.

This paper will use the Johansen procedure to check for potential cointegration and will also estimate a Vector Error Correction Model (VECM) to look into endogeneity problems and find speeds of adjustments for the three variables that track public investment, private

investment, and labor productivity. Since this is the first study done on the topic for Nepal, the paper will contribute firstly by establishing a cointegrating relationship among public investment, private investment, and labor productivity in Nepal. Secondly, the paper will quantify the impact of public and private investment on labor productivity in Nepal and contribute by identifying what type of investment has a higher impact and with what number of lags. This is very important to understand as developing countries mostly face the dilemma of choosing between public and private investment on many small to medium-scale projects.

The remainder of the paper is structured in the following manner: Section II provides a review of the existing literature pertaining to related subjects. Section III outlines the empirical model, while Section IV elaborates on the utilized data. Section V delves into the empirical findings. Section VI briefly addresses Granger Causality/Block Exogeneity tests, aiming to ascertain the direction of causation and the associated time lags. The final section provides concluding remarks, major takeaways, limitations, and policy implications.

2. Literature Review

According to macroeconomic theory, public investment stimulates economic activity through short-term effects on aggregate demand which raises the productivity of existing private capital. Several studies have shown that public investment encourages new private investment to take advantage of the higher productivity it creates (Barro, 1990; Glomm and Ravikumar, 1994; Turnovsky, 1997). Aschauer (1989) found that public investment had positive direct and indirect effects on private sector output and productivity for G-7 industrial economies. Aschauer (1989) in his other paper, found that a one percent increase in public investment leads to a 0.27 percent increase in labor productivity in the US, while private investment was found to have a smaller impact in the US for the period 1949-1985.

Ramirez (2000) studied the impact of public and private investment spending on the rate of productivity growth in Chile during the 1960-1995 period and found both public and private investment spending to have positive and significant effects. Furthermore, Herranz-Loncan (2007) studied the role of public investment in Spain's economy and found that public investment in infrastructure had a positive impact on GDP per capita growth and labor productivity growth in Spain. The author also argued that public investment in infrastructure facilitated the development of new industries and increased the connectivity of different regions of Spain. Likewise, Ramirez (2009) studied the role of public infrastructure investment in Argentina during 1960-2005 and found that public infrastructure investment, as opposed to overall public investment, had a positive effect on the rate of labor productivity growth in Argentina.

Moreover, Ngyun and Trin (2018) conducted a study on the effect of public investment on private investment and economic growth in Vietnam using data for 1990-2016 and found an inverted U relationship suggesting that public investment crowds in private investment in the short-run but crowds it out in the long-run. This study shows the variability of the impact of public investment in many countries which motivates this paper to investigate the case for Nepal.

Macrothink Institute™

Chatterjee, Lebesmuehlbacher, and Narayanan (2021) studied the impact that government investment in public infrastructure creates in formal and informal production in India. They find that public capital investments create positive and significant output elasticity in formal production firms in India but don't have any major effect on informal production firms. They specifically found that proximity to newly completed highways and time since project completion are productivity-enhancing for formal firms. There has not been any particular study done on how public and private investment has impacted labor productivity in Nepal. So, this paper is a new addition to the literature.

3. Empirical Model

The objective of this study is to examine the relationship between public investment, private investment, and labor productivity in Nepal over the period from 1991 to 2021. The research employs a single break unit test and Johansen cointegration analysis to explore the presence of a consistent, long-term relationship among the three variables: *logPROD*, *logPUB* and *logPRIV*. Subsequently, a VECM model is generated including the three dummy variables to obtain adjustment speeds and investigate the endogeneity and exogeneity of the variables. The general VECM model is mentioned below:

$$\Delta logPROD_{1t} = a_{10} + \sum_{i=1}^{p} a_{11} \Delta logPROD_{1t-i} + \sum_{i=1}^{p} a_{12} \Delta logPUB_{1t-i} + \sum_{i=1}^{p} a_{13} \Delta logPRIV_{1t-i} + a_{14}D_1 + a_{15}D_2 + a_{16}D_3 + \lambda_1 ECT_{t-1} + \mu_{1t}$$

$$\begin{aligned} \Delta logPUB_{2t} = &a_{20} + \sum_{i=1}^{p} a_{21} \Delta logPROD_{2t-i} + \sum_{i=1}^{p} a_{22} \Delta logPUB_{2t-i} + \sum_{i=1}^{p} a_{23} \Delta logPRIV_{2t-i} + a_{24}D_1 + a_{25}D_2 + a_{26}D_3 \\ &+ \lambda_2 ECT_{t-1} + \mu_{2t} \end{aligned}$$

$$\Delta logPRIV_{3t} = a_{30} + \sum_{i=1}^{p} a_{31} \Delta logPROD_{3t-i} + \sum_{i=1}^{p} a_{32} \Delta logPUB_{3t-i} + \sum_{i=1}^{p} a_{33} \Delta logPRIV_{3t-i} + a_{34}D_1 + a_{35}D_2 + a_{36}D_3 + \lambda_3 ECT_{t-1} + \mu_{3t}$$

Where *logPROD* refers to the log of GDP per person employed in constant 2017 PPP dollars, *logPRIV* refers to the log of Gross Fixed Capital Formation from the private sector in constant 2017 PPP dollars, and *logPUB* refers to the log of difference between Gross Fixed Capital Formation and Gross Fixed Capital Formation from private sector in constant 2017 PPP dollars which is used as a proxy series for public investment. All data is obtained from the World Development Indicators (WDI) Database of the World Bank.

4. Data

Within a VEC model, it is assumed that all three variables are of endogenous nature. Logarithmic transformation is done for all the variables which makes them easy to interpret. *logPROD* refers to the log of GDP (Gross Domestic Product) per person employed in constant 2017 PPP dollars. *logPROD* represents labor productivity in the model.

logPRIV refers to the log of Gross Fixed Capital Formation from the private sector in

constant 2017 PPP dollars. Initially, the Gross Fixed Capital Formation from the private sector was extracted as % of GDP and then it was converted to number form by using the value of GDP (in constant 2017 PPP dollars). *logPRIV* represents private investment in the model.

The difference between Gross Fixed Capital Formation and Gross Fixed Capital Formation from the private sector was taken to get a crude estimate of domestic investment. Firstly, it was calculated as % of GDP. Then, it was transformed to numerical value using the value of GDP (in constant 2017 PPP dollars). So, *logPUB* refers to the log of the difference between Gross Fixed Capital Formation and Gross Fixed Capital Formation from the private sector. *logPUB* represents a crude estimate for public investment in the model.

In the VEC model, dummy variables D1, D2, and D3 are introduced to account for the structural breaks identified in the dataset. D1 represents the period of the civil war that affected the Nepalese economy, spanning from 1996 to 2006. D2 accommodates the impact of the significant earthquake that occurred in Nepal in 2015, which led to disruptions in investment and labor productivity. D3 accommodates for the shock caused in the investment coming to Nepal by the COVID pandemic in 2020 and 2021.

The anticipated relationship between *logPROD* and *logPUB* is positive, as it is commonly held that an upsurge in public investment within the economic system would augment the pool of capital resources available to both existing and new workers, consequently enhancing labor productivity. Likewise, *logPROD* and *logPRIV* are also anticipated to have a positive relationship. But, there can also be instances where public investment can crowd out private investment by increasing the real interest rate. The increment in the interest rate discourages private investment. Such crowding out of private investment might decrease the labor productivity of the nation. In the case of Nepal, we can hypothesize that *logPROD* and *logPRIV* have a positive relationship.

Dummy variable D1 is anticipated to have a negative relationship with *logPROD*. A negative effect on *logPRIV* is also anticipated because private companies would not want to invest in Nepal during times of political conflict and uncertainty.

It is expected that Dummy variable D2 will exhibit a negative association with *logPROD* because many factories were devastated by the earthquake which lowered the factory output. D2 is also expected to have a negative impact on *logPRIV* as private companies reconsidered their immediate investment plans due to the earthquake.

Dummy variable D3 is anticipated to negatively affect *logPROD* because a pandemic is expected to reduce or slow down the growth rate of GDP which would decrease *logPROD*. It is also expected to have a negative impact on *logPRIV* because private companies would not think of expanding or investing more money during a pandemic.

5. Estimation Results

5.1 Testing for Stationarity

When working with macroeconomic data, evaluating the stationarity of the data is of utmost

significance as most macroeconomic variables are found to have unit roots. If a regression is run with non-stationary data then the regression will be spurious and the estimates will not be useful. Many different unit root tests are undertaken for all three variables in their log form: *logPROD, logPUB, logPRIV.* First, the variables are plotted in both level form and first difference form to perform preliminary analysis. Then, the Augmented Dickey Fuller (ADF), Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Lagrange Multiplier, Phillips-Perron (PP), Zivot-Andrews Single Break unit root tests are conducted to determine the order of integration of the three time series variables.

5.1.1 Graphical Analysis

Figures 1 and 2 in the Appendix below illustrate the log transformation of GDP per person employed (*logPROD*) presented in both its original level and first difference forms. In its original level form, *logPROD* displays features of a random walk with a positive drift and a deterministic trend, which implies that the mean is not constant. Hence, *logPROD* appears to be non-stationary when presented in its original level form. When *logPROD* is graphed in its first difference form, it becomes evident that stationarity is achieved, as there appears to be a consistent long-term mean to which the series returns. In the first difference form, a notable structural break is observed during the period of 2001-2002. This is due to the escalation of the civil war during that period and also the Royal Massacre of June 2001. Both of these factors had an adverse effect on GDP per person employed. From the graph, it looks like there are two other structural breaks, one in 2015 and one in 2020-21. The one in 2015 is due to the massive earthquake that Nepal experienced and the one in 2020-21 is because of the COVID pandemic. Both of these breaks had a negative impact on GDP per person employed.

In the graph of *logPUB* presented in its original level form, the series appears to resemble a random walk with neither a drift nor a deterministic trend. Nonetheless, when viewed in its first difference form, the series appears to exhibit stationarity, with a consistent long-term mean in place. In both level form and first difference form, we can see a decreasing slope in the graph during the 2000-2001 period which is also due to the political unrest caused by the

Maoist War against the government. The graphs in both level and first difference form are shown in Figures 3 and 4 respectively in the Appendix below.

Finally, the graph of *logPRIV* appears to follow a random walk pattern with both a positive trend and a deterministic component. Hence, when presented in its original level form, *logPRIV* appears to be non-stationary. In its first difference form, the series appears to exhibit stationarity, as it appears to return to a consistent long-term mean. In the first difference form, it appears that a structural break occurred in 2019-2020, which could be attributed to the impact of the COVID-19 pandemic. Surprisingly, there seems to be a growth in private investment right before the Royal Massacre of 2001. The graphs in both level and first difference form are shown in Figures 5 and 6 respectively in the Appendix below.

Figure 5.

Figure 6.

	Level Data			
	ADF	KPSS	PP	ZA
logPROD	-2.144 (0.502)	0.182	-2.130 (0.509)	-4.908
logPUB	-1.178 (0.897)	0.152	-1.365 (0.851)	-5.233
logPRIV	-3.504 (0.058)	0.107	-2.926 (0.169)	-4.595
	ADF and PP test critical value	ies: -4.297 (1%), -3.568 (5%), -3.218 (10%)	
	KPSS critical values: 0.216 ((1%), 0.146 (5%	6), 0.119 (10%)	
	Zivot-Andrews test critical v	alues: -5.57 (19	%), -5.08 (5%), -4.82 (10%)	
	(p-values in parentheses), sig	gnificance of 59	6	
	First Differenced Data			
	ADF	KPSS	PP	ZA
logPROD	-5.109 (0.002)	0.249	-9.558 (0.000)	-5.642
logPUB	-3.774 (0.001)	0.069	-3.765 (0.001)	-4.665
logPRIV	-4.481 (0.007)	0.149	-4.609 (0.005)	-45.425
	ADF test critical values with	trend and inter	cept: -4.297 (1%), -3.568 (5%), -3.218 (10%)
	PP test critical values: -4.309	9 (1%), -3.574 (5%), -3.222 (10%)	
	KPSS critical values with int	ercept: 0.739 (1%), 0.463 (5%), 0.347 (10%)	
	Zivot-Andrews test critical v	alues: -5.57 (19	%), -5.08 (5%), -4.82 (10%)	
	AD test critical values with r	no trend but inte	ercept: -2.647 (1%), -1.953 (59	%), -1.610 (10%)
	KPSS critical values with tre	and intercep	ot: 0.216 (1%), 0.146 (5%), 0.1	119 (10%)
	(p-values in parentheses), sig	gnificance of 59	6	

Table 1. Summary of statistics from all unit root tests

5.1.2 Augmented-Dickey Fuller (ADF) Test

Table 1 presents the results of ADF tests conducted on all three time series. These tests serve to formally assess the stationarity of the series and determine their order of integration. The tests are carried out in accordance with the Dolado-Sosvilla-Rivero methodology, which recommends initially testing the most unrestricted model (the one with trend and intercept). ADF tests have low power, so the results of the ADF test will be compared with the results of other more powerful tests like the PP test to confirm the order of integration.

In the case of *logPROD* presented in its original level form with both a constant and trend, the ADF t-statistic yields a p-value of 0.502. As a result, the null hypothesis, which suggests the existence of a unit root in the level form, cannot be rejected at a 5% significance level. Therefore, based on the ADF test, we can conclude that *logPROD* exhibits non-stationarity in its original level form. Upon first differencing *logPROD* and conducting the ADF test with both a constant and trend, the resulting ADF t-statistic yields a p-value of 0.002. This implies that *logPROD* is stationary in its first difference form, leading to the conclusion that *logPROD* is integrated of order 1 (I(1)).

In the case of *logPUB* presented in its original level form with both a constant and trend, the ADF t-statistic yields a p-value of 0.897. Consequently, the null hypothesis of a unit root in the level form cannot be rejected at a 5% significance level. Therefore, we can infer that *logPUB* lacks stationarity in its original level form based on the ADF test. However, when *logPUB* is subjected to a first-difference transformation, and the ADF test is applied without a constant and trend, the ADF t-statistic results in a p-value of 0.001. This indicates that *logPUB* is stationary in its first difference form, leading to the conclusion that *logPUB* is

integrated of order 1 (I(1)).

Finally, in the case of *logPRIV* presented in its original level form with both a constant and trend, the ADF t-statistic yields a p-value of 0.058. As a result, the null hypothesis of a unit root in the level form cannot be rejected at a 5% significance level. Consequently, we can assert that *logPRIV* lacks stationarity in its original level form according to the ADF test. However, when *logPRIV* is subjected to a first-difference transformation, and the ADF test is applied without a constant and trend, the ADF t-statistic yields a p-value of 0.007. This indicates that *logPRIV* is stationary in its first difference form, leading to the conclusion that *logPRIV* is integrated of order 1 (I(1). All of these results are presented in Table 1.

5.1.3 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Lagrange Multiplier Test

The KPSS test is a more potent Lagrange Multiplier test intended to validate the outcomes of the ADF test. In the KPSS test, the null and alternative hypotheses are inverted. So, the rejection of null would mean that the series is non-stationary and failure to reject would mean that the series is stationary. The KPSS test is done for all three variables: *logPROD*, *logPUB* and *logPRIV*. The results are reported in Table 1.

For *logPROD* in level form, the KPSS stat is greater than the critical value at the 5 % level which makes us reject the null. This means that the *logPROD* is non-stationary at level form. KPSS test is again performed for *logPROD* in first difference form with only intercept in the model. The KPSS statistic is 0.249 which is lower than the critical value at the 5% level. This makes us not reject the null and conclude that *logPROD* is stationary in the first difference form, which is consistent with the ADF test results.

For *logPUB* in level form, the KPSS stat is greater than the critical value at the 5 % level which makes us reject the null. This means that the *logPUB* is non-stationary in level form. KPSS test is again performed for logPUB in first difference form with both trend and intercept in the model. The KPSS statistic is 0.069 which is lower than the critical value at the 5% level. This makes us not reject the null and conclude that *logPUB* is stationary in the first difference form, in line with the ADF test.

Finally, for *logPRIV* in level form, the KPSS stat is not greater than the critical value at the 5 % level which makes us not reject the null. This implies that *logPRIV* exhibits stationarity in its original level form. This outcome contradicts the finding from the ADF test. KPSS test is again performed for *logPRIV* in first difference form with only intercept in the model. The KPSS statistic is 0.149 which is lower than the critical value at the 5% level. This makes us not reject the null and conclude that *logPRIV* is stationary in the first difference form. Since, the result for level form using the KPSS test for *logPRIV* contradicts that of the ADF test, we will use a more powerful PP test to have a solid conclusion regarding the order of integration of *logPRIV* later in the paper.

5.1.4 Phillips-Perron (PP) Test

The Phillips-Perron (PP) test is the most powerful of all the tests used in this paper to investigate the order of integration of time series variables. So, the result of the PP test is

given the highest importance in deciding the order of integration of the variables used in this paper. The PP t-statistic for *logPROD* in its original level form yields a p-value of 0.509, thus, the null hypothesis cannot be rejected at the 5% significance level. This leads us to the conclusion that *logPROD* is non-stationary in its original level form. Subsequently, the PP test was conducted once more for *logPROD* in its first difference form with both trend and intercept, resulting in a p-value of 0.000. This strongly indicates that *logPROD* is stationary in its first difference form. Consequently, the PP test establishes that *logPROD* is integrated of order 1 (I(1)).

In the case of logPUB presented in its original level form, the PP t-statistic yields a p-value of 0.851, preventing us from rejecting the null hypothesis at a 5% significance level. This leads to the conclusion that logPUB lacks stationarity in its original level form. Subsequently, the PP test was once again conducted for logPUB in its first difference form, resulting in a p-value of 0.001 for the PP t-statistic. As a result, we reject the null hypothesis at the 5% level, suggesting that logPUB is stationary in its first difference form. Therefore, the PP test concludes that logPUB is integrated of order 1 (I(1)).

Finally, for logPRIV in its original level form, the PP t-statistic yields a p-value of 0.169, thereby preventing us from rejecting the null hypothesis at the 5% significance level. This leads us to the conclusion that logPRIV lacks stationarity in its original level form. Subsequently, the PP test was once again conducted for logPRIV in its first difference form, resulting in a p-value of 0.005 for the PP t-statistic. As a result, we reject the null hypothesis at the 5% level, indicating that logPRIV is stationary in its first difference form. Therefore, the PP test concludes that logPRIV is integrated of order 1 (I(1)).

Based on the robust PP test, it is established that all three variables, namely logPROD, logPUB, and logPRIV, are integrated of order 1 (I(1)).

5.1.5 Zivot-Andrews Single Break Unit Root Test

Conventional unit root tests such as ADF, PP, and KPSS may lack sufficient sensitivity when dealing with data containing structural breaks. Therefore, it is essential to investigate the presence of any structural breaks in the data. This is why the Zivot-Andrews Single Break Unit Root Test is applied to all three variables employed in the model. It is worth noting that the Zivot Andrews test can only detect a single structural break, even if there are multiple breaks within the series. Hence, its effectiveness may be compromised when multiple structural breaks exist in the data. When conducting the Zivot-Andrews test, three models, namely Models A, B, and C, are available for selection. Model C is consistently favored in accordance with Sen (2003). In the Zivot-Andrews test, the p-value is disregarded due to the presence of structural breaks. The null hypothesis is rejected only when the Zivot-Andrews (ZA) t-statistic exceeds the critical value in absolute terms. The choice of lag for the test is made based on the data's characteristics. For annual data, such as the data used in this study, the lags are usually 1-2 lags.

In the case of *logPROD* in its original level form, the Zivot-Andrews (ZA) t-statistic is -4.908, which is lower than the 5% critical value of -5.08 in absolute terms. Consequently, the null

hypothesis of non-stationarity cannot be rejected with one lag. This indicates that *logPROD* lacks stationarity in its original level form according to the ZA test. The structural break was found to be in 2002, which was the inflection point of a decade-long (1996-2006) civil war in Nepal. It was also right after the Royal Massacre of Nepal in 2001. The political instability during the early 2000s had several negative implications on GDP per person employed and public and private investment. Conversely, when considering *logPROD* in its first difference form, the ZA t-statistic is -5.642, which surpasses the 5% critical value of -5.08 in absolute terms. This allows us to reject the null hypothesis of non-stationarity with a structural break for one lag. According to the ZA test, *logPROD* is stationary in its first difference form with the identified structural break occurring in 2008.

In the context of *logPUB* in its original level form, the Zivot-Andrews (ZA) t-statistic is -5.233, exceeding the 5% critical value of -5.08 in absolute terms. As a result, we can reject the null hypothesis of non-stationarity with one lag. This signifies that *logPUB* is stationary in its original level form, with a detected structural break in 2001. It's worth noting that this finding contradicts the outcome of the PP test, where *logPUB* was deemed non-stationary in its level form. The presence of the structural break is supported by real events such as the Royal Massacre and the civil war, but the stronger PP test result is given precedence in the analysis. On the other hand, in the case of *logPUB* in its first difference form, the ZA t-statistic stands at -4.665, falling short of the critical value at a 5% significance level. This suggests non-stationarity in the first difference form, although this outcome contradicts the result obtained from the PP test. Therefore, this result is disregarded in favor of the more robust PP test result.

Lastly, with respect to *logPRIV* in its original level form, the Zivot-Andrews (ZA) t-statistic is -4.595, which falls below the 5% critical value of -5.08 in absolute terms. As a result, we cannot reject the null hypothesis of non-stationarity with one lag. This implies that *logPRIV* lacks stationarity in its original level form, as indicated by the ZA test. The identified structural break corresponds to the year 1999, coinciding with Nepal's general election amid the ongoing civil war. Conversely, when considering *logPRIV* in its first difference form, the ZA t-statistic amounts to -5.425, exceeding the 5% critical value of -5.08 in absolute terms. This enables us to reject the null hypothesis of non-stationarity with a structural break with one lag. In the first difference form, the structural break is identified in the year 2000. Therefore, according to the ZA test, *logPRIV* is stationary in its first difference form with a detected structural break.

Hence, following a thorough examination of all the test outcomes, it is determined that all three variables, namely *logPROD*, *logPUB*, and *logPRIV*, are integrated of order one (I(1)).

5.2 Cointegration Analysis

The three variables included in the model, namely *logPROD*, *logPUB*, and *logPRIV*, have all been determined to exhibit the same order of integration, which is I(1). Consequently, cointegration analysis can be conducted to examine the existence of a stable, long-term relationship among these variables. There are two methods for performing cointegration analysis: the Engle-Granger procedure and the Johansen procedure. The Engle-Granger (E-G)

Macrothink Institute™

procedure only finds one cointegrating relationship and is used only when we have two variables. The Johansen procedure can find multiple cointegration relationships if present and is used when there are more than two variables in the model. Since there are three variables in the model, the Johansen procedure is used in this paper.

5.2.1 Johansen Procedure

Johansen Procedure provides 5 different models to choose from to run a cointegration analysis. Models 1 and 5 are usually excluded considering the unrealistic assumptions underlying them. So, among the remaining 3 models, the best model needs to be found using the Pantula Principle. Table 2 shows the comparative statistics for models 2, 3 and 4 and helps choose the most suitable model.

Model 2 is characterized as the most constrained model, incorporating an intercept in the cointegrating equation but no trend, and omitting both the intercept and trend in the VAR model. Model 3 is a comparatively less constrained model, encompassing an intercept but no trend in both the cointegrating equation and the VAR model. Model 4 represents the least constrained model, featuring an intercept in both the cointegrating equation and the VAR model. Model 4 represents the least constrained model, as well as a trend exclusively in the cointegrating equation while excluding it from the VAR model.

Johansen cointegration analysis is performed for the trio of variables: *logPROD*, *logPUB*, and *logPRIV*, alongside the incorporation of three dummy variables with a lag of up to 2. Following the Pantula selection procedure, the results indicate the presence of one cointegrating vector at a 5% significance level. Additionally, the procedure advises selecting Model 2, as it stands as the final significant estimate before reaching the point where the null hypothesis of no cointegration cannot be rejected at a 5% significance level. These findings are detailed in Table 2.

5.2.2 Vector Error Correction Model (VECM)

The Johansen procedure identified the presence of a single cointegrating vector, signifying the existence of a stable relationship among the three model variables. Consequently, a VEC model is computed for the three endogenous variables, namely *logPROD*, *logPUB*, and *logPRIV*, and is extended to include the three exogenous dummy variables, D1, D2, and D3, employing a lag length of two. The outcomes are provided in Table 3.

r (number of	n-r (number of variables minus	Model 2	Model 3	Model 4
Up to 0	3	50.788 reject	23.478* fail	49.486 reject
Up to 1	2	17.383 fail	4.795 fail	21.683 fail
Up to 2	1	1.823 fail	1.201 fail	3.067 fail

 Table 2. Pantula Selection Procedure

Model 2: Trace test suggests the presence of 1 cointegrating eqn at the 0.05 level.

Model 3: Trace test suggests the presence of 0 cointegrating eqn at the 0.05 level.

Model 4: Trace test suggests the presence of 1 cointegrating eqn at the 0.05 level.

* represents the last significant estimate before the null of no cointegration cannot be rejected at the 5% level

The outcomes for the variables in the extended term align with the theoretical assumption of having a positive impact of public and private investment on labor productivity. The VECM model shows that a one percent increase in public investment increases labor productivity by 0.04 percent, all else held constant. Also, a one percent increase in private investment increases labor productivity by 0.39 percent in the long run, all else held constant. Private investment and public investment are significant at 5 % and 10% level respectively. Although both private and public investment have a positive impact on labor productivity in Nepal, it is private investment that has a more positive and significant impact according to the VECM.

The VECM finds two negative and highly significant adjustment coefficients for two of the three equations: D(logPROD) and D(logPUB). This means that there is a short-run adjustment mechanism for these two system equations. Based on the VECM results, it is indicated that the D(logPUB) equation is the best one, however, the D(logPROD) equation is also very significant. Both equations have correct signs (negative) on the error correction term which means those two systems adjust to their long-run equilibrium values. Both models have low SBC and AIC values. For logPROD, 10% deviation away from equilibrium this year is corrected by 2.69% in the next year. In the case of logPUB, a 10% deviation from the equilibrium in the current year is rectified by 24.22% in the subsequent year.

In order to examine the weak exogeneity of the variables, zero restrictions were applied to the adjustment coefficients of each equation. Based on the restriction, it is concluded that only *logPRIV* is weakly exogenous and the remaining two variables: *logPROD* and *logPUB* are found to be endogenous. The results are attached in the appendix.

Table 3. VECM Results

Vector Error Correction E Date: 05/09/23 Time: 14 Sample (adjusted): 1994 Included observations: 21 Standard errors in () & 1-	stimates 1:35 2021 5 after adjustments statistics in []		
Cointegrating Eq.	CointEq1		
LOGPROD(-1)	1.000000		
LOGPUB(-1)	-0.038874 (0.02411) [-1.61257]		
LOGPRIV(-1)	-0.396765 (0.01942) [-20.4268]		
С	1.400035 (0.53415) [2.62104]		
Error Correction:	D(LOGPROD)	D(LOGPUB)	D(LOGPRIV)
CointEq1	-0.269524 (0.08832) [-3.05157]	-2.422077 (0.63135) [-3.83634]	0.036509 (0.38996) [0.09362]
D(LOGPROD(-1))	-0.175009 (0.20512) [-0.85321]	-3.583635 (1.46622) [-2.44413]	2.268427 (0.90563) [2.50481]
D(LOGPROD(-2))	-0.075896 (0.20457) [-0.37101]	-2.186644 {1.46229} [-1.49535]	0.983426 (0.90320) [1.08882]
D(LOGPUB(-1))	0.044286 (0.03325) [1.33178]	-0.434886 (0.23770) [-1.82954]	0.071520 (0.14682) [0.48713]
D(LOGPUB(-2))	-0.010459 (0.03272) [-0.31965]	0.252108 (0.23390) [1.07786]	-0.180002 (0.14447) [-1.24595]
D(LOGPRIV(-1))	0.006298 (0.06207) [0.10145]	-1.523245 (0.44372) [-3.43287]	0.039694 (0.27407) [0.14483]
D(LOGPRIV(-2))	-0.076808 (0.07570) [-1.01463]	-0.153521 (0.54113) [-0.28371]	-0.068641 (0.33423) [-0.20537]
D1	-0.011240 (0.01045) [-1.07564]	-0.226062 (0.07469) [-3.02653]	-0.010432 (0.04614) [-0.22613]
D2	-0.028679 (0.01432) [-2.00262]	0.175953 (0.10237) [1.71883]	-0.039531 (0.06323) [-0.62521]
D3	-0.004300 (0.01906) [-0.22556]	-0.075533 (0.13626) [-0.55433]	-0.209542 (0.08416) I-2.489711

Vector Error Correction Estimates

R-squared	0.516869	0.646182	0.367640
Adj. R-squared	0.275304	0.469272	0.051460
Sum sq. resids	0.005763	0.294480	0.112346
S.E. equation	0.017893	0.127906	0.079003
F-statistic	2.139666	3.652618	1.162756
Log likelihood	79.10832	24.03618	37.52700
Akaike AIC	-4.936308	-1.002584	-1.966214
Schwarz SC	-4.460521	-0.526797	-1.490427
Mean dependent	0.027437	0.040410	0.059674
S.D. dependent	0.021019	0.175572	0.081118
Determinant resid cova	riance (dof adj.)	1.92E-08	
Determinant resid cova	riance	5.10E-09	
Log likelihood		148.1136	
Akaike information crite	erion	-8.150971	

For D(*logPROD*), the VECM indicates that a percentage increase in *logPUB* and *logPRIV* last year would increase labor productivity by 0.04% and 0.006% respectively in the short run. But, the short-run impacts are not significant at the 5 % level which hints that any kind of investment would need some time to impact labor productivity. The result also shows that a one percent increase in *logPROD* last year will decrease labor productivity by 0.18% and it decreases more slowly in the upcoming years. In the case of Nepal, the effect of lag terms of *logPROD* is found to be insignificant. D2 (dummy used for the 2015 earthquake) only has a significant and negative impact on *logPROD* in the short run. Dummy variables D1 and D3 do not have a significant impact on explaining the variation in *logPROD*.

For D(*logPUB*), the VECM indicates that a percentage increase in *logPROD* and *logPRIV* last year would decrease public investment by 3.58% and 1.52% respectively in the short run. The short-run impacts of both *logPROD* and *logPRIV* are significant at the 5% level. This suggests that public and private investment are substitutes in the short run. Public investments generally take time to show its positive impact on labor productivity, so it might be the reason why they are negatively related in the short-run when *logPUB* is taken as an endogenous variable. The effect of last year's public investment on *logPUB* is found to be insignificant in the short run. D1 (dummy for civil war years) is highly significant and has a negative impact on *logPROD* which makes economic sense because public investments (except military spending) will go down drastically in the short run when there is a civil war in a country. Dummy variables D1 and D3 do not play a significant role in explaining the variation in *logPUB*.

For D(logPRIV), the VECM indicates that a percentage increase in logPROD and logPUB

last year would increase private investment by 2.26% and 0.07% respectively in the short run. The short-run impact of *logPROD* is significant at 5 % level but that of *logPUB* is insignificant. This suggests that private investors put high emphasis on high labor productivity before making investment decisions. As suggested by theory, it looks like public and private investment can sometimes be complementary and sometimes be substitutes. It appears like public investment positively impacts private investment but private investment negatively impacts public investment in the short run in view of the results of two equations: D(logPUB) and D(logPRIV). But, deeper analysis needs to be done before making concluding remarks about the relationship of public and private investments. The effect of last year's private investment on *logPRIV* is found to be insignificant but positive in the short run. D3 (dummy for COVID pandemic) is significant and has a negative impact on *logPRIV* which makes economic sense because private investments went down almost everywhere during the pandemic and Nepal was not an exception to that. Dummy variables D1 and D2 do not have a significant impact on explaining the variation in *logPRIV*.

6. Granger Causality/Block Exogeneity Tests

To further investigate the direction of causality, Granger Causality/Block Exogeneity Test is conducted. As cointegration among all three variables has been confirmed through the Johansen procedure, it is now possible to perform the Granger Causality Test. The outcomes of this test are presented in Table 4.

VEC Granger Causality/Block Exogeneity Wald Tests Date: 05/09/23 Time: 16:13 Sample: 1991 2021 Included observations: 28							
Dependent variable: D(LOGPROD)							
Excluded	Chi-sq	df	Prob.				
D(LOGPUB) D(LOGPRIV)	1.893905 1.149547	2 2	0.3879 0.5628				
All	5.383717	4	0.2501				
Dependent variable: D(L0	OGPUB)						
Excluded	Chi-sq	df	Prob.				
D(LOGPROD) D(LOGPRIV)	7.006054 12.06320	2 2	0.0301 0.0024				
All	20.98794	4	0.0003				
Dependent variable: D(L0	OGPRIV)						
Excluded	Chi-sq	df	Prob.				
D(LOGPROD) D(LOGPUB)	6.619769 1.815107	2	0.0365 0.4035				
All	6.930848	4	0.1396				

Table 4. Granger Causality Tests

The Granger Causality Test indicates that labor productivity "Granger causes" public investment. It shows that private investment also "Granger causes" public investment. In addition, it also shows that labor productivity and private investment jointly "Granger cause" public investment. This result strengthens the VECM result which had shown public investment to be an endogenous variable.

The test also shows that labor productivity "Granger causes" private investment which makes economic sense and supports the literature as private investments are solely focused on optimizing profit opportunities.

The test does not show public and private investment to "Granger cause" labor productivity. This could be attributed to the fact that the test was conducted with only 2 lags, whereas the impact on the variables might become evident after a longer lag period, exceeding 2 lags. Generally, investments are meant to take some time before they impact labor market conditions in an economy. To test for this, a Pairwise Granger Causality Test was run and a causation from *logPUB* to *logPROD* was found at 4 and 5 lags which shows that public investments take time to impact labor productivity. The results are attached in the appendix.

7. Summary and Conclusion

This paper examined the relationship between GDP per person employed (labor productivity), public investment, and private investment in Nepal during the 1991-2021 period with an emphasis on examining the impact of public and private investment on labor productivity by using the Johansen cointegration method and estimating a VECM. The results show that there is cointegration among the three variables meaning that there is a long-run stable equilibrium relationship among labor productivity, public investment, and private investment. In the long run, it is found that both public and private investment have a positive impact on labor productivity. Private investment is found to have a stronger and more significant impact compared to public investment in the long run. Labor productivity was expected to be endogenous and is found to be one as well. Public investment was expected to be exogenous but is found to be endogenous which is one of the major takeaways of the paper. In the case of Nepal, public investment is endogenous meaning that it is much more than just a legislative decision, rather it is determined by the economic activity happening in the Nepalese economy. On the causality side, it is found that both labor productivity and private investment "cause" public investment after 2 lags. It is also found that labor productivity "causes" private investment after 2 lags. However, it is confirmed that public investment takes time to "cause" labor productivity as there was a causation from public investment to labor productivity only at lags 4 and 5. Based on these results, it can be said that the Nepalese government needs to make private investment friendly policies to generate more private investment which would then improve labor productivity which would again "cause" private and public investment and create a "virtuous circle of labor productivity and economic growth" in Nepal.

Some of the limitations of this study are the high level of aggregation of the data utilized and the paucity of data for the variables in question. As more data becomes available, future studies might want to assess the impact of public and private investment spending on labor

productivity in different sectors of the Nepalese economy, such as the industrial, primary, and service sectors. This might be undertaken via a panel unit root and cointegration approach. Second, other relevant variables might be included, again, based on availability, such as the labor force, and disaggregated expenditures on physical infrastructure, education, and health.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Informed consent

Obtained.

Ethics approval

The Publication Ethics Committee of the Macrothink Institute.

The journal's policies adhere to the Core Practices established by the Committee on Publication Ethics (COPE).

Provenance and peer review

Not commissioned; externally double-blind peer reviewed.

Data availability statement

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

Data sharing statement

No additional data are available.

Open access

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

References

Aschauer, D. A. (1989). Is Public Expenditure Productive?. *Journal of monetary economics*, 23(2), 177-200. https://doi.org/10.1016/0304-3932(89)90047-0

Aschauer, D. A. (1989). Public Investment and Productivity Growth in the Group of Seven. *Economic perspectives*, *13*(5), 17-25.

Barro, R. J. (1990). Government Spending in a Simple Model of Endogeneous Growth.

Journal of Political Economy, 98(5, Part 2). https://doi.org/10.1086/261726

Chatterjee, S., Lebesmuehlbacher, T., & Narayanan, A. (2021). How Productive is Public Investment? Evidence from Formal and Informal Production in India. *Journal of Development Economics*, 151, 102625. https://doi.org/10.1016/j.jdeveco.2021.102625

Glomm, G., & Ravikumar, B. (1994). Public Investment in Infrastructure in a Simple Growth model. *Journal of Economic Dynamics and Control, 18*(6), 1173-1187. https://doi.org/10.1016/0165-1889(94)90052-3

Herranz-Loncán, A. (2007). Infrastructure Investment and Spanish Economic Growth, 1850-1935. *Explorations in Economic History*, 44(3), 452-468. https://doi.org/10.1016/j.eeh.2006.06.002

Miyamoto, H., Gueorguiev, N., Honda, J., Baum, A., & Walker, S. (2020). *Growth Impact of Public Investment and the Role of Infrastructure Governance*. International Monetary Fund, Washington, DC.

Nguyen, C. T., & Trinh, L. T. (2018). The Impacts of Public Investment on Private Investment and Economic Growth. *Journal of Asian Business and Economic Studies*, 25(1), 15-32. https://doi.org/10.1108/jabes-04-2018-0003

Ramirez, M. D. (2000). Public Capital Formation and Labor Productivity Growth in Chile. *Contemporary Economic Policy*, *18*(2), 159-169. https://doi.org/10.1111/j.1465-7287.2000.tb00014.x

Ramirez, M. D. (2009). Does Public Investment Enhance Labor Productivity Growth in Argentina? A Cointegration Analysis. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.1324851

Sen, A. (2003). On Unit-Root Tests when the Alternative is a Trend-break Stationary Process. *Journal of Business & Conomic Statistics*, 21(1), 174-184. https://doi.org/10.1198/073500102288618874

Topel, R. (1999). Chapter 44 Labor Markets and Economic Growth. *Handbook of Labor Economics*, 2943-2984. https://doi.org/10.1016/s1573-4463(99)30035-3

Turnovsky, S. J. (1997). Fiscal Policy in a Growing Economy with Public Capital. *Macroeconomic Dynamics, 1*(03). https://doi.org/10.1017/s1365100597004045

Vandenbroucke, G. (2017). Boomers have played a role in changes in productivity. *The Regional Economist*, 25(4).

Appendix

ADF Test results for logPROD:

Augmented Dickey-Fuller Unit Root Text on LOGPROD					Augmented Dickey-Fuller Unit Root Test on D(LOGP				
Null Hypothesis: LOGP Exogenous: Constant, I Lag Length: 0 (Automat	ROD has a uni Linear Trend tic - based on S	d Dickey-Fuller t root SC. maxlag=7)	Unit Root Te	st on LOGPROD	Null Hypothesis: D(LOGPROD) has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxiag=7				
			1-Statistic	Prob.*				1-Statistic	Prob.*
Augmented Dickey Full	artact statistic		2 142719	0.5010	Augmented Dickey-Full	er test statistic		-5.109141	0.0016
Test critical values:	1% level 5% level		-4.296729 -3.568379	0.0013	real unital values.	5% level 10% level		-3.580622 -3.225334	
Wackingon (1005) one	cided a volue	2			*MacKinnon (1996) one	-sided p-value	S		
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares	er Test Equatio LOGPROD)	n			Dependent Variable: Di Method: Least Squares Date: 05/07/23 Time: 1	LOGPROD.2)			
Augmented Dickey-Full Dependent Variable: Di Method: Least Squares Date: 05/07/23 Time: 1 Sample (adjusted): 199 Included observations	er Test Equatio LOGPROD) 15:34 12 2021 30 after adjustr	n ments			Augmented Dickey-role Dependent Variable: D(Method: Least Squares Date: 05/07/23 Time: 1 Sample (adjusted): 199 Included observations: Variable	LOGPROD,2) 15:43 4 2021 28 after adjust	ments Std. Error	t-Statistic	Prob.
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 05/07/23 Time: 1 Sample (adjusted): 199 Included observations: Variable	er Test Equatio LOGPROD) 15:34 32 2021 30 after adjustr Coefficient	ments Std. Error	1-Statistic	Prob.	Dependent Variable: Di Method: Léast Squares Date: 05/07/23 Time: 1 Sample (adjusted), 199 Included observations: Variable Dit.OGPROD(-1))	1793 Equalo LOGPROD.2) 15:43 4 2021 28 after adjust Coefficient -1.701868	ments Std. Error 0.333103	1-Statistic -5.109141	Prob.
Augmented Dickey-Full Dependent Variable: D/ Method: Least Squares Date: 05/07/23 Time: 1 Sample (adjusted): 199 Included observations: Variable LOGPROD(-1) C @TREND(~1991")	er Test Equatio (LOGPROD) 15:34 12:2021 30 after adjustr Coefficient -0.261720 2.120746 0.007412	ments Std. Error 0.122087 0.080029 0.003293	1-Statistic -2.143718 2.163962 2.250663	Prob. 0.0412 0.0395 0.0328	Dependent Variable: Di Method: Least Squares Date: 05/07/23 Time: 1 Sample (adjusted): 199 Included observations: Variable D(LOGPROD(-1)): D(LOGPROD(-1)): D(LOGPROD(-1)): C @TREND(*1991*)	- 1-91 Equalo LOGPROD.2) 15:43 28 after adjust Coefficient -1.701868 0.398506 0.034656 0.000743	ments Std. Error 0.333103 0.214526 0.010193 0.000536	1-Statistic -5.109141 1.857613 3.400144 1.367208	Prob. 0.0000 0.0755 0.0024 0.1781

ADF Test results for logPUB:

a) Level form					b) First Difference form				
Augmen	ted Dickey-Fu	ller Unit Root T	est on LOGP	UB	Augmented Dickey-Fuller Unit Root Test on D(LOGPUB)				
Null Hypothesis: LOGP Exogenous: Constant, L Lag Length: 0 (Automat	il Hypothesis: LOGPUB has a unit root igenous: Constant, Linear Trend g Length: 0 (Automatic - based on SIC, maxiag=7)			Null Hypothesis: D(LO Exogenous: None Lag Length: 0 (Automa	GPUB) has a u tic - based on S	nit root BIC, maxlag=7)			
			t-Statistic	Prob.*	10			t-Statistic	Prob.*
Augmented Dickey-Full- Test critical values:	ar test statistic 1% level 5% level 10% level		-1.178101 -4.296729 -3.568379 -3.218382	0.8971	Augmented Dickey-Full Test critical values:	ler test statistic 1% level 5% level 10% level		-3.774215 -2.647120 -1.952910 -1.610011	0.0005
Augmented Dickey-Full	r Test Equatio	s. n			Augmented Dickey-Ful	ler Test Equatio	on.		
Augmented Dickey-Fuli Dependent Variable: Dr Method: Least Squares Date: 05/07/23 Time 1 Sample (adjusted): 109 Included observations:	er Test Equatio LOGPUB) 6:09 2:2021 30 after adjusti	n nents			Augmented Dickey-Ful Dependent Variable: D Method: Least Square: Date: 05/07/23 Time: Sample (adjusted): 19 Included observations:	ler Test Equatic (LOGPUB,2)) 16:14 93 2021 29 after adjust	on ments		
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 05/07/23 Time: 1 Sample (adjusted): 199 Included observations: Variable	er Test Equatio LOGPUB) 6:09 2:2021 30 after adjust	s. in ments Std. Error	1-Statistic	Prob.	Augmented Dickey-Ful Dependent Variable: D Method: Least Squared Date: 05/07/23 Time: Sample (adjusted): 19 Included observations: Variable	ler Test Equatio (LOGPUB,2) 16:14 93 2021 29 after adjust Coefficient	ments Std. Error	t-Statistic	Prob
Augmented Dickey-Fuli Dependent Variable: Dr Method: Least Squares Date: 05/07/23 Time: 1 Sample: (adjusted): 199 Included observations: Variable LOGPUB(-1) C	er Test Equatic LOGPUB) 6:09 2 2021 30 after adjust Coefficient -0.110257 2 334531	s. ments Std. Error 0.093589 1.998396	1-Statistic -1,178101 1,168203	Prob. 0.2490 0.2529	Augmented Dickey-Full Dependent Variable: D Method: Least Squarei Date: 05/07/23 Time: Sample (adjusted): 19 Included observations: Variable D(LOGPUB(-1))	ler Test Equatio (LOGPUB,2) 16:14 93 2021 29 after adjust Coefficient -0.701185	ments Std. Error 0.185783	1-Statistic -3.774215	Prob. 0.0001

ADF Test results for logPRIV:

a) Level form									
Augmented Dickey-Fuller Unit Root Test on LOGPRIV					Augmented Dickey-Fuller Unit Root Test on D(LOGPRIV)				
Null Hypothesis: LOGPRIV has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=7)				Null Hypothesis: D(LO Exogenous: Constant, Lag Length: 1 (Automa	SPRIV) has a u Linear Trend tic - based on S	nit root IIC. maxlag=7)			
			t-Statistic	Prob.*				t-Statistic	Prob.*
Augmented Dickey-Full Test critical values:	er test statistic 1% level 5% level		-3.504152 -4.309824 -3.574244	0.0577	Augmented Dickey-Full Test critical values:	er test statistic 1% level 5% level 10% level		-4.481161 -4.323979 -3.580622 -3.225334	0.0070
	10% level		-3.221728		*MacKinnon (1996) on	e-sided p-value	s.		
Dependent Variable: D	er Test Equatio (LOGPRIV)	n			Dependent variable: D Method: Least Squares Date: 05/07/23 Time:	(LOGPRIV,2) 16:39			
Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 199 Included observations:	er Test Equatio (LOGPRIV) 16:34 33 2021 29 after adjust	n			Dependent Vanable. D Method: Lesis Squares Date: 05/07/23 Time: Sample (adjusted): 19/ Included observations: Variable	(LOGPRIV.2) 16:39 34:2021 28 after adjust Coefficient	ments Std. Error	1-Statistic	Prob
Variable Variable Variable Variable Variable Variable	er Test Equatio (LOGPRIV) 16:34 33:2021 29 after adjust Coefficient	n ments Std. Error	t-Statistic	Prob.	Dependent vanable. D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 191 Included observations: Variable D(LOGPRIV(-1)): D(LOGPRIV(-1).2)	(LOGPRIV,2) 16:39 34:2021 28 after adjust Coefficient -1:260034 0:345584	Std. Error 0.281185 0.213168	1-Statistic -4.491161 1.621181	Prob. 0.0002 0.1180
Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 19/ Included observations: Variable LOGPRIV(-1) D(LOGPRIV(-1))	er Test Equatio (LOGPRIV) 16:34 33:2021 29 after adjust Coefficient -0.601785 0.401094	n ments Std. Error 0.171735 0 184114	1-Statistic -3.504152 2.178511	Prob. 0.0017 0.3390	Dependent vanable. D Method Least Stuares Date: 05/07/23 Time: Sample (adjusted); 19 Included observations: Variable D(LOGPRIV(-1)); D(LOGPRIV(-1),2) C (@TREND(*1991*)	(LOGPRIV,2) 16:39 24 2021 28 after adjust Coefficient -1.260034 0.345584 0.072876 0.000459	Std. Error 0.281105 0.213168 0.039565 0.001916	1-Statistic -4.481161 1.621181 1.841915 0.239344	Prob. 0.0002 0.1180 0.0775 0.8125
Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 19/ Included observations: Variable LOGPRIV(-1) D(LOGPRIV(-1)) C @TREND(~1991~)	er Test Equatio (LOGPRIV) 16:34 33:2021 29 after adjust Coefficient -0.601785 0.401094 13:31937 0.039209	ments Std. Error 0.171735 0.184114 3.781522 0.011519	1-Statistic -3.504152 2.178511 3.522225 3.403889	Prob. 0.0017 0.0390 0.0017 0.0022	Dependent vanable. D Method Least Squares Date: 05/07/23 Time. Sample (adjusted): 19 Included observations: Variable D(LOGPRIV(-1)): D(LOGPRIV.2) 16.39 14.2021 28 after adjust Coefficient -1.260034 0.345584 0.072876 0.000459 0.525787 0.468510 0.01411	ments Std. Error 0.281185 0.213168 0.039565 0.001916 Mean depend S.D. depende S.D. depende S.D. depende	1-Statistic -4.491161 1.621181 1.841915 0.239344 lent var nt var terion	Prob. 0.0002 0.1180 0.0775 0.8125 -0.00787 0.111480 -2.047041
Adjusted R-squared Sum Squared Sample (adjusted): 19 Included observations: Variable LOGPRIV(-1) D(LOGPRIV(-1)) C @TREND(*1991*) R-squared Adjusted R-squared S.E. of regression Sum squared resid	er Test Equatio (LOGPRIV) 16:34 33:2021 29 after adjust Coefficient -0.601785 0.401094 13:31937 0.039209 0.342414 0.263504 0.17886 0.128473	n ments Std. Error 0.171735 0.184114 3.781522 0.011519 Mean depende Akaike inflo cr Schwarz crife	1-Statistic -3.504152 2.178511 3.522225 3.403889 Jent var int var int var iterion	Prob. 0.0017 0.0390 0.0017 0.0022 0.064344 0.083532 -2.305590 -2.305590 -2.305590	Dependent vanable. D Method: Least Squares Date: 05/07/23. Time: Sample (adjusted): 191 Included observations: Variable D(LOGPRIV(-1)) D(LOGPRIV(-1),2) C GTREND(*1991*) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic)	LOGPRIV.2) 16.39 28 after adjust Coefficient -1.260034 0.345584 0.072876 0.000459 0.525787 0.466510 0.081411 0.15906 32.65869 8.870049 0.000391	Ments Std. Error 0.281105 0.213168 0.039565 0.01916 Mean depend S.D. depende Akaike info or Schwarz crite Hannan-Quin Durbin-Watso	1-Statistic -4.491161 1.621181 0.239344 lent var nt var flerion n criter. m stat	Prob. 0.0002 0.1186 0.0775 0.07872 -0.00787 0.111460 -0.011460 -1.988860 2.04704 -1.988860 2.043480

KPSS test for logPROD:

	And all the lot of the lot of the	the second se	the local section and the local diversion in						
	KPSS Unit Re	oot Test on LOG	SPROD			KPSS Unit Ro	ot Test on D(LC	GPROD)	
Iull Hypothesis: LOGPROD is stationary 2xogenous: Constant, Linear Trend Iandwidth: 4 (Newey-West automatic) using Bartlett kernel			Null Hypothesis: D(LOC Exogenous: Constant Bandwidth: 6 (Newey-W	PROD) is stat	lionary) using Bartlett (ternel			
				LM-Stat.					LM-Stat.
Kwiatkowski-Phillips-S Asymptotic critical value	chmidt-Shin tes IS*:	t statistic 1% level 5% level 10% level		0.181672 0.216000 0.146000 0.119000	Kwiatkowski-Phillips-S Asymptotic critical value	chmidt-Shin te Is*:	st statistic 1% level 5% level 10% level		0.249660 0.739000 0.463000 0.347000
*Kwiatkowski-Phillips-	Schmidt-Shin (1	992, Table 1)			*Kwiatkowski-Phillips-S	Schmidt-Shin (1992, Table 1)		
				0.0000.00					
Residual variance (no HAC corrected variance KPSS Test Equation Dependent Variable: L(Method L and Square	Correction) (Bartlett kerne	0		0.000848	Residual variance (no o HAC corrected variance KPSS Test Equation Dependent Variable: Di Method: Least Squares	(Bartlett kerne	l)		0.000418
Residual variance (no HAC corrected variance KPSS Test Equation Dependent Variable: L(Method: Least Squares Date: 05/07/23 Time: Sample: 1991 2021 Included observations:	orrection) e (Bartlett kerne DGPROD 15:55 31	0		0.002713	Residual variance (no o HAC corrected variance RPSS Test Equation Dependent Variable: Dr Method. Least Squares Date: 05/07/23 Time: Sample (adjusted): 199 Included observations:	(Bartlett kerne LOGPROD) 16:02 12:2021 30 after adjust	i) ments		0.000418
Residual variance (no HAC corrected variance KPSS Test Equation Dependent Variable: Li Method: Least Squares Date: 05/07/23 Time: Sample: 1991 2021 Included observations: Variable	correction) (Bartlett kerne DGPROD 15:55 31 Coefficient	0 Std. Error	1-Statistic	0.000248 0.002713 Prob.	Residual variance (no o HAC corrected variance KPSS Test Equation Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 191 Included observations: Variable	(LOGPROD) (LOGPROD) (16:02 (2:2021) 30 after adjust Coefficient	ments Std. Error	t-Statistic	0.000418 0.000243 Prob.
Residual variance (no HAC corrected variance KPSS Test Equation Dependent Variable: Li Method: Least Squares Date: 05/07/23 Time: Sample: 1991 2021 Included observations: Variable C	correction) (Bartlett kerne DGPROD 15:55 31 Coefficient 8.052535	0 Std. Error 0.010556	1-Statistic 762.8074	0.000848 0.002713 Prob.	Residual variance (no o HAC corrected variance NPSS Test Equation Dependent Variable: Di Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 199 Included observations: Variable C	(Bartlett kerne (LOGPROD) 16:02 12:2021 30 after adjust Coefficient 0.026226	ments Std. Error 0.003797	t-Statistic 6.906699	0.000411 0.000243 Prob. 0.000
Residual variance (no HAC corrected variance KPSS Test Equation Dependent Variable: Li Method: Least Squares Date: 05/07/23 Time: Sample: 1991 2021 Included observations: Variable C @TREND("1991") R-squared Adjusted R-squared SE, of regression Sum squared resid	correction) (Bartlett kerne DGPROD 15:55 31 Coefficient 8.052535 0.985965 0.985965 0.985057 0.030102 0.026278	Std. Error 0.010556 0.000604 Mean depende Akaike info cri Schwarz criter	t-Statistic 762,8074 44.49665 ent var nt var terion ion	Prob. 0.0000 0.0000 0.0000 0.0000 0.246300 -4.106117 -4.013602	Residual variance (no o HAC corrected variance Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 191 Included observations: Variable C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	(LOGPROD) (Eartlett kerne (LOGPROD) (5:02 (2:2021) 30 after adjust Coefficient 0.0026226 0.000000 0.020796 0.012545 7.4 12685 2.054437	ments Std. Error 0.003797 Mean depend Akaike info or Schwarz crite Hannan-Quin	t-Statistic 6.906699 lent var nt var terion tion n criter.	0.000411 0.000243 Prob. 0.02622 0.02079 -4.87512 -4.82841 -4.86018

KPSS test for logPUB:

	KPSSU	nit Root Test of	LOGPUB	
Null Hypothesis: LOGP Exogenous: Constant, L Bandwidth: 4 (Newey-W	UB is stationar Linear Trend (est automatic)	y using Bartlett k	ternel	
				LM-Stat.
Kwiatkowski-Phillips-Se	chmidt-Shin tes	at statistic		0.152160
Asymptotic critical value	18*	1% level		0.215000
		5% level		0.146000
		10% level		0.119000
*Kwłatkowski-Phillips-S	Schmidt-Shin (1	1992, Table 1)		
Residual variance (no o	correction)			0.108478
HAC corrected variance	(Bartiett kerne	0		0.390344
KPSS Test Equation Dependent Variable: LC Method: Least Squares Date: 05/07/23 Time: 1 Sample: 1991 2021 Included observations:	(Bartlett kerne DGPUB 16:21 31	0		0.390344
KPSS Test Equation Dependent Variable: LC Method: Least Squares Date: 05/07/23 Time: 1 Sample: 1991 2021 Included observations: Variable	(Bartlett kerne DGPUB 16:21 31 Coefficient	0) Std. Error	1-Statistic	0.390344 Prob.
KPSS Test Equation Dependent Variable: LC Method: Least Squares Date: 05/07/23 Time: 1 Sample: 1991 2021 Included observations: Variable C	(Bartlett kerne DGPUB 16:21 31 Coefficient 21.35099	0.119420	1-Statistic 178.7888	0.390344 Prob. 0.0000
KPSS Test Equation Dependent Variable: LC Method: Least Squares Date: 05/07/23 Time: 1 Sample: 1991 2021 Included observations: Variable C @TREND(~1991~)	(Bartlett kerne DGPUB 16:21 31 Coefficient 21.35099 0.033841	0 Std. Error 0.119420 0.006638	1-Statistic 178.7888 4.948967	0.390344 Prob. 0.0000 0.0000
KPSS Test Equation Dependent Variable: LC Method: Least Squares Date: 05/07/23 Time: 1 Sample: 1991 2021 Included observations: Variable C @TREND(~1991~) R-squared	(Bartlett kerne DGPUB 16:21 31 Coefficient 21.35099 0.033841 0.457866	Std. Error 0.119420 0.006638 Mean depend	1-Statistic 178.7888 4.948967 ent var	0.390344 Prob. 0.0000 0.0000 21.85850
KPSS Test Equation Dependent Variable: LC Method: Least Squares Date: 05/07/23 Time: Sample: 1991 2021 Included observations: Variable C @TREND("1991") R-squared Adjusted R-squared	(Bartlett kerne DGPUB 16:21 31 Coefficient 21.35099 0.033841 0.457866 0.439171	Std. Error 0.119420 0.006838 Mean depend S.D. depende	1-Statistic 178.7888 4.948967 ent var nt var	0.390344 Prob. 0.0000 0.0000 21.85860 0.454714
KPSS Test Equation Dependent Variable LC Method: Least Squares Date: 05/07/23 Time: 1 Sample: 1991 2021 Included observations: Variable C @TREND("1991") R-squared Adjusted R-squared SE: of regression	(Bartlett kerne DGPUB 16:21 31 Coefficient 21.35099 0.033841 0.457866 0.439171 0.340529	Std. Error 0.119420 0.006638 Mean depend S.D. depende Akaike info cri	1-Statistic 178.7888 4.948967 ent var nt var terion	0.390344 Prob. 0.0000 0.85860 0.454714 0.745705
KPSS Test Equation Dependent Variable: LC Method: Least Squares Date: 05/07/23 Time: 1 Sample: 1991 2021 Included observations: Variable C @TREND("1991") R-squared Adjusted R-squared S.E. of regression Sum squared resid	(Bartlett kerne DGPUB 16:21 31 21.35099 0.033841 0.457866 0.439171 0.340529 3.302831	Std. Error 0.119420 0.006838 Mean depende Akaike info cri Schwarz criter	1-Statistic 178.7888 4.948967 ent var nt var terion ion	0.390344 Prob. 0.0000 0.0000 21.85860 0.454714 0.745700 0.838221
KPSS Test Equation Dependent Variable: LC Method: Least Squares Date 05/07/23 Time: 1 Sample: 1991 2021 Included observations: Variable C @TREND(~1991~) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	(Bartlett kerne DGPUB 16:21 31 Coefficient 21.35099 0.033841 0.457866 0.439171 0.340529 3.362831 -9.558434	Std. Error 0.119420 0.006838 Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Oulin	1-Statistic 178.7888 4.948967 ent var nt var terion ion n criter.	0.390344 Prob. 0.0000 0.454714 0.45470 0.838221 0.77585
KPSS Test Equation Dependent Variable: LC Method: Least Squares Date: 05/07/23 Time: 1 Included observations: Variable C @TREND("1991") R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	(Bartlett kerne DGPUB 16:21 31 Coefficient 0.435099 0.033841 0.457865 0.439171 0.340529 3.302831 -9.558431 -9.558431 24.49228	Std. Error 0.119420 0.006638 Mean depend S.D. depende Akalike info cri Schwarz critter Hannan-Ouin Durbin-Watso	1-Statistic 178.7888 4.948967 ent var nt var terion ion n criter. n i stat	0.390344 Prob. 0.0000 0.0000 21.85860 0.454714 0.454705 0.83822 0.775863 0.248130

b) First Difference form

KPSS Unit Root Test on D(LOGPUB)

Null Hypothesis: D(LOGPUB) is stationary Exogenous: Constant, Linear Trend Bandwidth: 1 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-St	nin test statistic	0.069578
Asymptotic critical values*:	1% level	0.216000
	10% level	0.119000

*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)

Residual variance (no correction)	0.026762
HAC corrected variance (Bartlett kernel)	0.033057

KPSS Test Equation Dependent Variable: D(LOGPUB) Method: Least Squares Date: 05/07/23 Time: 16:23 Sample (adjusted): 1992 2021 Included observations: 30 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
с	-0.018612	0.063411	-0.293516	0.7713
@TREND("1991")	0.003703	0.003572	1.036755	0.3087
R-squared	0.036969	Mean depend	ient var	0.038786
Adjusted R-squared	0.002575	S.D. depende	ent var	0.169552
S.E. of regression	0.169333	Akaike info cr	iterion	-0.649557
Sum squared resid	0.802864	Schwarz crite	rion	-0.556144
Log likelihood	11.74336	Hannan-Quin	n criter.	-0.619673
F-statistic	1.074860	Durbin-Watso	on stat	1.510306
Prob(F-statistic)	0.308721			

KPSS test for logPRIV:

	KPSS Unit Ro	oot Test on LOC	PRIV	
Iuli Hypothesis: LOGP xogenous: Constant, I landwidth: 1 (Newey-W	RIV is stationar Linear Trend Vest automatic)	ry) using Bartlett (temel	
				LM-Stat.
wiatkowski-Phillips-Se	chmidt-Shin tes	st statistic		0.107237
symptotic critical value	s*:	1% level		0.216000
		5% level		0.146000
		10% level		0.119000
Kwiatkowski-Phillips-S	Schmidt-Shin (1	1992, Table 1)		
lesidual variance (no d	correction)			0.007511
AC corrected variance	(Bartlett kerne	0		0.011587
PSS Test Equation lependent Variable: L0 lethod: Least Sources	OGPRIV			
PSS Test Equation ependent Variable: LC lethod: Least Squares late: 05/07/23 Time: 1 ample: 1991 2021 icluded observations:	0GPRIV 16:45 31			
PSS Test Equation lependent Variable: LC lethod: Least Squares late: 05/07/23 Time: 1 lample: 1991 2021 included observations: Variable	0GPRIV 16:45 31 Coefficient	Std. Error	1-Statistic	Prob.
PSS Test Equation lependent Variable: LC lethod: Least Squares late: 05/07/23 Time: 1 lample: 1991 2021 voluded observations: Variable C	0GPRIV 16:45 31 Coefficient 22:11644	Std. Error 0.031424	1-Statistic 703.8109	Prob.
PSS Test Equation rependent Variable: LC lethod: Least Squares tate: 05/07/23 Time: 1 ample: 1991 2021 included observations: Variable C @TREND(*1991*)	0GPRIV 16:45 31 Coefficient 22:11644 0.066188	Std. Error 0.031424 0.001799	1-Statistic 703.8109 36.78512	Prob. 0.0000 0.0000
PSS Test Equation lependent Variable: LC tethod: Least Squares late: 05/07/23 Time: 1 lample: 1991 2021 included observations: Variable C @TREND(*1991*) I-squared	0GPRIV 16:45 31 Coefficient 22:11644 0.066188 0.979018	Std. Error 0.031424 0.001799 Mean depend	1-Statistic 703.8109 36.78512 ent var	Prob. 0.0000 0.0000 23.10926
PSS Test Equation ependent Variable: LC ethod: Least Squares ate: 05/07/23 Time: 1 ample: 1991 2021 cluded observations: Variable C @TREND("1991") -squared djusted R-squared	0GPRIV 16:45 31 22:11644 0.066188 0.979018 0.978295	Std. Error 0.031424 0.001799 Mean depend S.D. depende	1-Statistic 703.8109 36.78512 ent var nt var	Prob. 0.0000 0.0000 23.10926 0.608207
PSS Test Equation ependent Variable: LC ethod: Least Squares ate: 05/07/23 Time: 1 ample: 1991 2021 cluded observations: Variable C @TREND(*1991*) -squared djusted R-squared E. of regression	0GPRIV 16:45 31 22:11644 0.066188 0.978018 0.978018 0.978018	Std. Error 0.031424 0.001799 Mean depende S.D. depende Akaike info cri	1-Statistic 703.8109 36.78512 ent var nt var terion	Prob. 0.0000 0.60820 -1.924457
PSS Test Equation rependent Variable: LC lethod: Least Squares tate: 05/07/23 Time: 1 ample: 1991 2021 nctuded observations: Variable C @TREND("1991") t-squared djusted R-squared E. of regression um squared resid	0GPRIV 16:45 31 22:11644 0.066188 0.978295 0.096295 0.092846	Std. Error 0.031424 0.001799 Mean depend S.D. depende Akaike info crr Schwarz criter	1-Statistic 703.8109 36.78512 ent var nt var terion ion	Prob. 0.0000 0.0000 23.10926 0.608201 -1.924457 -1.924457 -1.924457
PSS Test Equation lependent Variable: LC lethod: Least Squares late: 05/07/23 Time: 1 lample: 1991 2021 nctuded observations: Variable C @TREND("1991") I-squared djusted R-squared i.E. of regression um squared resid og likelihood	0GPRIV 16:45 31 Coefficient 22:11644 0.066188 0.978295 0.089606 0.232846 3:182909	Std. Error 0.031424 0.001799 Mean depende 3.D. depende Akaike info cri Schwarz critet Hannan-Guin	1-Statistic 703.8109 36.78512 ent var nt var terion fon n cnter.	Prob. 0.0000 0.0000 23.1092t 0.60820 -1.92445 -1.8314301 -1.834301
PSS Test Equation lependent Variable: LC lethod: Least Squares late: 05/07/23 Time: 1 lample: 1991 2021 Included observations: Variable C @TREND(*1991*) I-squared djusted R-squared E. of regression um squared resid og likellhood statistic	DGPRIV 16:45 31 Coefficient 22:11644 0.066188 0.979018 0.978295 0.089606 0.232846 31.82909 1353.145	Std. Error 0.031424 0.001799 Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Ourbin-Watso Durbin-Watso	1-Statistic 703.8109 36.78512 ent var nt var terion ion n criter. n stat	Prob. 0.0000 0.0000 -1.924457 -1.831942 -1.834307 0.854837

First Difference form

KPSS Unit Root Test on D(LOGPRIV)

Hypothesis: D(LOGPRIV) is stationary

enous: Constant

dwidth: 6 (Newey-West automatic) using Bartlett kernel

	LM-Stat.
nin test statistic	0.149218
1% level	0.739000
5% level	0.463000
10% level	0.347000
	nin test statistic 1% level 5% level 10% level

atkowski-Phillips-Schmidt-Shin (1992, Table 1)

Residual variance (no correction)	0.006635
HAC corrected variance (Bartlett kernel)	0.003340

S Test Equation endent Variable: D(LOGPRIV)

hod: Least Squares e: 05/07/23 Time: 16:52 hple (adjusted): 1992 2021 ided observations: 30 after adjustments

Variable	Coefficient	Std. Error	1-Statistic	Prob.
с	0.066398	0.015126	4.389785	0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.000000 0.000000 0.082847 0.199044 32.66326	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin	ent var nt var terion ion n criter.	0.066398 0.082847 -2.110884 -2.064177 -2.095942

PP test for logPROD:

					b) First Difference form							
	Phillip	ps-Perros Unit	Root Test on	LOGPROD	Phillips-Perron Unit Root Test on D(LOGPR							
Null Hypothesis: LOGP Exogenous: Constant, I Bandwidth: 1 (Newey-W	ROD has a uni Linear Trend Vest automatic)	t root using Bartlett I	semel		Null Hypothesis: D(LOGPROD) has a unit root Exogenous: Constant, Linear Trend Bandwidth: 28 (Newey-West automatic) using Bartlett kernel					Null Hypothesis: D(LOGPROD) has a unit root Exogenous: Constant, Linear Trend Bandwidth: 28 (Newey-West automatic) using Bartlett kernel		
			Adj. t-Stat	Prob.*				Adj, 1-Stat	Prob.*			
Phillips-Perron test stat	Perron test statistic -2.130139			0.5091	Phillips-Perron test stat	istic		-9.558096	0.0000			
Test critical values:	1% level 5% level 10% level		-4.296729 -3.568379 -3.218382		Test critical values:	1% level 5% level 10% level		-4.309824 -3.574244 -3.221728				
"MacKinnon (1996) one	e-sided p-value	\$ ₁ ;		0	*MacKinnon (1996) one	-sided p-value	5.					
Residual variance (no o HAC corrected variance	correction) • (Bartiett kerne	1)		0.000347 0.000340	Residual variance (no o HAC corrected variance	orrection) (Bartlett kerne	0		0.000401 3.45E-05			
Phillips-Perron Test Eq	uation (LOGPROD)				Phillips-Perron Test Eq Dependent Variable: Dr	uation LOGPROD.2)						
Phillips-Perron Test Eq Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 190 Included observations:	(LOGPROD) 15:45 12:2021 30 after adjust	ments			Phillips-Perron Test Eq Dependent Variable: Dr Method: Least Squares Date: 05/07/23 Time: 1 Sample (adjusted); 199 Included observations:	uation LOGPROD,2) 5:49 3 2021 29 after adjustr	ments					
Phillips-Perron Test Eq Dependent Variable: Di Method: Least Squares Date: 05/07/23. Time: Sample (adjusted): 191 Included observations: Variable	(LOGPROD) 15.45 12.2021 30 after adjustr Coefficient	ments Std. Error	1-Statistic	Prob.	Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 05/07/23 Time: 1 Sample (adjusted); 199 Included observations: Variable	uation LOGPROD,2) 5:49 3 2021 29 after adjustr Coefficient	ments Std. Error	t-Statistic	Prob.			
Phillips-Perron Test Eq Dependent Variable: Di Method: Least Squares Date: 0507/23 Time: Sample (adjusted): 19/ Included observations: Variable LOGPROD(-1) C @TREND(*1991*)	uation (LOGPROD) 15:45 32 2021 30 after adjusts Coefficient -0.261720 2.120746 0.007412	ments Std. Error 0.122087 0.980029 0.003293	1-Statistic -2.143718 2.153962 2.250663	Prob. 0.0412 0.0395 0.0328	Phillips-Perron Test Eq Dependent Variable. D(Method. Least Squares Date: 05/07/23 Time: 1 Sample (adjusted); 199 Included observations: Variable D(LOGPROD(-1)) C @TREND(*1991*)	uation LOGPROD.2) 5:49 3 2021 29 after adjush Coefficient -1.209168 0.024791 0.000489	Std. Error 0.218214 0.009111 0.000499	t-Statistic -6.541197 2.720868 0.979926	Prob. 0.0000 0.0115 0.3362			

PP test for logPUB:

					- /				
	Phillips-Perro	n Unit Root Tes	t on LOGPUE					and the second second	
Null Hypothesis: LOGP	UB has a unit r	bot			3	millips-Perron	Unit Root Test	on D(LOGPU	8)
Exogenous: Constant, I Bandwidth: 1 (Newey-V	Linear Trend Vest automatic	using Bartlett i	cernel		Null Hypothesis: D(LO) Exogenous: None Bandwidth: 1 (Newey-V	PUB) has a un	iit root using Bartlett I	kernel	
			Adj. 1-Stat	Prob.*		All and the second second		Adj t-Stat	Proh.*
Phillips-Perron test sta	tistic		-1.364512	0.8508				maj. Ponan	Pilos.
Test critical values:	1% level	1	-4.296729		Phillips-Perron test sta	tistic		-3.765421	0.0005
	5% level		-3.568379		Test critical values:	196 level	1	-2.647120	
	10% level		-3.218382			5% level		-1.952910	
*Markingon (1996) one	e-sided p-value	6				10% level		-1.610011	
macromiter (1999) end	100000				*MacKinnon (1995) on	-sided p-value	s		
Residual variance (no r	correction)			0.025454					
HAC corrected variance (Bartlett kernel) 0.032328					Residual variance (no correction)				
Phillips-Perron Test Eq	uation	74		0.032328	Residual variance (no HAC corrected variance	correction) (Bartlett kerne	0		0.027740
Phillips-Perron Test Eq Dependent Variable: Di Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 190 Inchulde dobservations:	uation (LOGPUB) 16:18)2 2021 30 after adjust	ments		0.032328	Residual variance (no HAC corrected variance Phillips-Perron Test Ec Dependent Variable: D Method: Least Squares Date: 05/07/23 Time:	orrection) (Bartiett kerne uation (LOGPUB.2) 16:20	0		0.027419
Phillips-Perron Test Eq Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 199 Included observations. Variable	(LOGPUB) (LOGPUB) 16:18 12:2021 30 after adjust	ments Std. Error	t-Statistic	Prob.	Residual variance (no.) HAC corrected varianci Phillips-Perron Test Ed Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 198 Included observations:	uation LOGPUB.2) 16:20 13 2021 29 after adjustr	0 ments		0.027740
Phillips-Perron Test Ec Dependent Variable: Di Method: Least Squares Date: 05/07/23 Time: 1 Sample (adjusted): 199 Included observations: Variable LOGPUB(-1)	uation (LOGPUB) 16:18 22 2021 30 after adjust Coefficient -0.110257	ments Std. Error 0.093589	t-Statistic -1.178101	Prob. 0.2490	Residual variance (no HAC corrected variance Phillips-Perron Test Ec Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 199 Included observations: Variable	(Bartlett kerne LOGPUB,2) 16:20 29 after adjustr Coefficient	ments Std. Error	1-Statistic	0.027740 0.027419 Prob.
Phillips-Perron Test Eq Dependent Variable D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 199 Included observations: Variable LOGPUB(-1) C	uation (LOGPUB) 16:18 12:2021 30 after adjust Coefficient -0.110257 2:334531	ments Std. Error 0.093589 1.998396	1-Statistic -1.178101 1.168203	Prob. 0.2529	Residual variance (no HAC corrected variance Phillips-Perron Test Ec Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 199 Included observations: Variable	interfaction) (Bartlett kerne (LOGPUB.2) 16:20 13:2021 29 after adjustr Coefficient	ments Std. Error	I-Stalistic	0.027740 0.027419 Prob.
Phillips-Perron Test Eq Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 199 Included observations: Variable LOGPUB(-1) C @TREND(*1991*)	Luation (LOGPUB) 16:18 22:021 30 after adjust Coefficient -0.110257 2.334531 0.007174	ments Std. Error 0.093589 1.998396 0.004611	1-Statistic -1.178101 1.565754	Prob. 0.2529 0.2529 0.1314	Residual variance (no HAC corrected variance Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 198 Included observations: Variable D(LOGPUB(-1))	correction) (Bartlett kerne (LOGPUB.2) 16:20 13 2021 29 after adjustr Coefficient -0.701185	ments Std. Error 0.185783	1-Statistic -3.774215	0.027740 0.027419 Prob. 0.0001
Phillips-Perron Test Eq Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 199 Included observations: Variable LOGPUB(-1) C @TREND("1991") R-squared	Luation (LOGPUB) 16:18 22:2021 2021 Coefficient -0.110257 2.334531 0.007174 0.084053	ments Std. Error 0.093589 1.998396 0.004611 Mean depend	1-Statistic -1.178101 1.168203 1.555754 ent var	Prob. 0.2529 0.1314 0.038786	Residual variance (no HAC corrected variance Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 199 Included observations: Variable D(LOGPUB(-1)) R-squared	correction) (Bartlett kerne LOGPUB,2) 16:20 29 after adjustr Coefficient -0.701185 0.336353	ments Std. Error 0.185783 Mean depend	I-Statistic -3.774215 ent var	0.027740 0.027419 Prob. 0.0000 0.00028
Phillips-Perron Test Eq Dependent Variable: Di Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 199 included observations: Variable LOGPUB(-1) © TREND(*1991*) R-squared Adjusted R-squared	uation (LOGPUB) 16.18 12.2021 30 after adjust Coefficient -0.110257 2.334531 0.007174 0.084053 0.016205	ments Std. Error 0.093589 1.998396 0.004611 Mean depend S.D. depende	t-Statistic -1.178101 1.168203 1.555754 ent var nt var	Prob. 0.23290 0.2529 0.2529 0.2529 0.169552	Residual variance (no) HAC corrected variance Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 19 Included observations: Variable D(LOGPUB(-1)) R-squared Adjusted R-squared	correction) (Bartlett kerne LOGPUB.2) 16:20 13 2021 29 after adjustr Coefficient -0.701185 0.336353 0.336353	ments Std. Error 0.185783 Mean depend S.D. depende	1-Statistic -3.774215 lent var nt var	0.027740 0.027419 Prob. 0.0000 0.00728 0.208069
Phillips-Perron Test Ec Dependent Variable D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 199 Included observations: Variable LOGPUB(-1) C @TREND(*1991*) R-squared Adjusted R-squared SE. of regression	uation (LOGPUB) 16-18 22 2021 30 after adjust Coefficient -0.110257 2.334531 0.007174 0.084053 0.016205 0.168172	ments Std. Error 0.093589 1.998396 0.004611 Mean depende S.D. depende Akaike info cri	1-Statistic -1.178101 1.168203 1.555754 ent var nt var terion	Prob. 0.2529 0.2529 0.1314 0.038786 0.169552 -0.633017	Residual variance (no HAC corrected variance Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 19(Included observations: Variable D(LOGPUB(-1)) R-squared Adjusted R-squared S.E. of regression	correction) (Bartlett kerne LOGPUB.2) 16:20 13 2021 29 after adjustr Coefficient -0.701185 0.336353 0.336353 0.169503	ments Std. Error 0.185783 Mean depende Akaike info cri	I-Statistic -3.774215 ent var It var Iterion	0.027740 0.027419 Prob. 0.0000 0.00728 0.20806 -0.67802
Phillips-Perron Test Ec Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 199 Included observations: Variable LOGPUB(-1) C @TREND("1991") R-squared Adjusted R-squared S.E. of regression Sum squared resid	Luation (LOGPUB) 16:18 22 2021 Coefficient -0.110257 2.334531 0.007174 0.084053 0.016205 0.168172 0.763611	ments Std. Error 0.093589 1.998396 0.004611 Mean depend Akaike info cri Schwarz criter	1-Statistic -1.178101 1.168203 1.555754 Vent var It var Iterion tion	Prob. 0.2490 0.2529 0.1314 0.038786 0.169552 -0.633017 -0.492898	Residual variance (no.) HAC corrected variance Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 19 Included observations: Variable D(LOGPUB(-1)) R-squared Adjusted R-squared S.E. of regression Sum squared resid	correction) (Bartlett kerne LOGPUB,2) 16:20 29 after adjustr Coefficient -0.701185 0.336353 0.36353 0.804471	ments Std. Error 0.185783 Mean depend S.D. depend Akaike Info cn Schwarz criter	I-Statistic -3.774215 ient var terion ion	0.027740 0.027419 Prob. 0.0000 0.00728 0.20806 -0.67802 -0.63087
Phillips-Perron Test Ec Dependent Variable: Dr Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 199 included observations: Variable LOGPUB(-1) C @TREND("1991") R-squared Adjusted R-squared SE. of regression Sum squared resid Log likelihood	uation (LOGPUB) 16.18 22.2021 30 after adjust Coefficient -0.110257 2.334531 0.0084053 0.018205 0.168172 0.763611 12.49526	ments Std. Error 0.093589 1.998396 0.004611 Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin	t-Statistic -1.178101 1.168203 1.555754 lent var nt var lerion lon n criter.	Prob. 0.2490 0.2529 0.1314 0.038786 0.169552 -0.432098 -0.588192	Residual variance (no) HAC corrected variance Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 19/ Included observations: Variable D(LOGPUB(-1)) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	correction) (Bartlett kerne LOGPUB.2) 16:20 13 2021 29 after adjust Coefficient -0.701185 0.336353 0.336353 0.336353 0.804471 10.83134	ments Std. Error 0.185783 Mean depend Akaike info on Schwarz criter Hannan-Ouin	1-Statistic -3.774215 lent var nt var terion ion n criter.	0.027740 0.027419 Prob. 0.0000 0.00728 0.20806 -0.67802 -0.63025 -0.63025
Phillips-Perron Test Ed Dependent Variable D Method: Least Squares Date: 05/07/23 Time: Sample (adjusted): 199 Included observations: Variable LOGPUB(-1) C @TREND(*1991*) R-squared Adjusted R-squared SE. of regression Sum squared resid Log likelihood F-statistic	tuation (LOGPUB) 16:18 22:2021 30 after adjust Coefficient -0.110257 2.334531 0.007174 0.084053 0.016205 0.168172 0.763611 12:49526 1.238837	ments Std. Error 0.093589 1.998396 0.004611 Mean depende Akaike info cri Schwarz criter Hannan-Out	t-Statistic -1.178101 1.166203 1.555754 lent var nit var nit var lerion tion n criter. n stat	Prob. 0.032329 0.2529 0.1314 0.038786 0.159552 -0.633017 -0.492998 -0.588192 1.430190	Residual variance (no HAC corrected variance Dependent Variable: D Methot: Least Squares Date: 05/07/23 Time: Sample (adjusted): 19 Included observations: Variable D(LOGPUB(-1)) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	correction) (Bartlett kerne LOGPUB.2) 16:20 13:2021 29 after adjust Coefficient 0.336353 0.36353 0.36353 0.169503 0.804471 1.0.83174 1.947156	ments Std. Error 0.185783 Mean depend Akaike into cri Schwarz criter Hannan-Quin	I-Statistic -3.774215 lent var nt var terion ion n criter.	0.027740 0.027419 Prob. 0.0000 0.000728 0.20806 -0.67802 -0.63087 -0.63087 -0.66325

PP test for logPRIV:

Ph	illips-Perron U	nit Root Test of	LOGPRIV		Philli	ps-Perron Uni	t Root Test on	D(LOGPRIV)	
Null Hypothesis: LOGP Exogenous: Constant, I Bandwidth: 2 (Newey-W	RIV has a unit i Linear Trend /est automatic)	oot using Bartlett I	ternel		Null Hypothesis: D(LOG Exogenous: Constant, L Bandwidth: 7 (Newey-W	PRIV) has a u inear Trend est automatic)	nit root using Bartlett (kemel	
			Adj. 1-Stat	Prob.*				Adj. 1-Stat	Prob.*
Phillips-Perron test stat Test critical values	tistic 1% level 5% level		-2.925597 -4.295729 -3.568379	0.1691	Phillips-Perron test stat Test critical values	stic 1% level 5% level 10% level		-4.609229 -4.309824 -3.574244 -3.221728	0.0050
Mackingon (1996) opt	Turns Tevel		-3.216362		"MacKinnon (1996) one	-sided p-value	8.		
macronicion (1999) one	-sided p-value	2.			Residual variance (no o	orrection) (Bartlett kerne	Ð		0.006606
Residual variance (no o HAC corrected variance	correction) (Bartlett kerne	0		0.005098 0.006083			.,		
Obiling Davias Test Fo	unting				Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares	uation LOGPRIV,2)			
Phillips-Perron Test Eq Dependent Variable: Di Method: Least Squares Date: 05/07/23 Time: 1	uation LOGPRIV) 16:40				Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 05/07/23 Time: 1 Sample (adjusted): 109 Included observations :	aation LOGPRIV,2) 6:42 3:2021 29 after adjustr	ments		
Phillips-Perron Test Eq Dependent Variable: Di Method: Least Squares Date: 05/07/23 Time: 1 Sample (adjusted): 199 Incluided observations:	uation LOGPRIV) 16:40 12 2021 30 after actiust	meats			Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 05/07/23 Time: 1 Sample (adjusted): 199 Included observations : Variable	aation LOGPRIV,2) 6:42 3 2021 29 after adjustr Coefficient	ments Std. Error	t-Statistic	Prob
Phillips-Perron Test Eq Dependent Variable: D Method: Least Squares Date: 05/07/23 Time: 1 Sample (adjusted): 199 Included observations: Variable	uation LOGPRIV) 16:40 12 2021 30 after adjustr Coefficient	ments Std. Error	1-Statistic	Prob.	Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 05/07/23 Time: 1 Sample (adjusted): 199 Included observations : Variable D(LOGPRIV(-1)) C @TREND(~1991~)	-0.887815 -0.000767	Std. Error 0.197121 0.037758 0.001909	1-Statistic -4.503909 1.821791 -0.401575	Prob. 0.0001 0.0800 0.6913
Phillips-Perron Test Eq Dependent Variable: Di Method: Least Squares Date: 05/07/23 Time: 1 Sample (adjusted): 199 Included observations: Variable LOGPRIV(-1) C @TREND("1991")	uation (LOGPRIV) 16:40 22 2021 30 after adjust Coefficient -0.437398 9.724389 0.028042	nents Std. Error 0.158484 3.493786 0.010696	1-Statistic -2.759892 2.783911 2.621769	Prob. 0.0103 0.0097 0.0142	Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 05/07/23 Time: 1 Sample (adjusted): 109 Included observations : Variable D(LOGPRIV(-1)) C @TREND(*1991*) R-squared Adjusted R-squared S.E. of regression Sum squared read	astion .OGPRIV.2) 6.42 3.2021 29 after adjust -0.887815 0.068805 -0.00075 0.438453 0.395258 0.085839 0.10155	Menta Sid Error 0.197121 0.037758 0.001909 Mean depend S.D. dependa Akaike info or Schwarz crite	1-Statistic -4.503909 1.821791 -0.401575 Jent var interion rion	Prob. 0.0001 0.6913 -0.005216 0.110382 -1.974999 1.833554

Zivot-Andrews (ZA) test for logPROD:

		b) First Difference form
Zivot-Andrews Unit Root Test Date: 05/07/23 Time: 16:05 Sample: 1991 2021 Included observations: 31 Null Hypothesis: LOGPROD has a un break in both the int Chosen lag length: 0 (maximum lags: Chosen break point 2002	it root with a structural ercept and trend 1)	Zivot-Andrews Unit Root Test Date: 05/07/23 Time: 16:05 Sample: 1991 2021 Included observations: 31 Null Hypothesis: LOGPROD_FD has a unit root with a structural break in both the intercept and trend Chosen lag length: 1 (maximum lags: 1) Chosen break point 2008
Zivot-Andrews test statistic 1% critical value: 5% critical value: 10% critical value:	t-Statistic Prob.* -4.907712 0.007757 -5.57 -5.08 -4.82	t-Statistic Prob.* Zivot-Andrews test statistic -5.642243 0.080679 1% critical value: -5.68 5% critical value: -5.08 10% critical value: -4.82
-2.0 -2.5 -3.0	ew Breakpoints	Zivot-Andrew Breakpoints -4.6 -4.8 -5.0 -5.2 -5.4

Zivot-Andrews (ZA) test for logPUB:

Zivot-Andrews (ZA) test for logPRIV:

ohansen	Test with	n Model	2:	Johansen	Test with	h Model	3:		
	Johansen Cointegration Test					Johansen Cointegration Test			
late: 05/09/23 Time: 14:10 ample (adjusted): 1994 2021 nduded observations: 28 after adjustments rend assumption: No deterministic trend (restricted constant) leries: LOGPROD LOGPUB LOGPRIV ixogenous series: D1 D2 D3 Varning: Critical values assume no exogenous series .ags interval (in first differences): 1 to 2				Date: 05/09/23 Time: 14:12 Sample (adjusted): 1994 2021 Included observations: 28 after adjustments Trend assumption: Linear deterministic trend Series: LOGPROD LOGPUB LOGPRIV Exogenous series: D1 D2 D3 Warning: Critical values assume no exogenous series Lags interval (in first differences): 1 to 2					
Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**	Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None * At most 1 At most 2	0.696696 0.426340 0.063036	50.78774 17.38322 1.823078	35.19275 20.26184 9.164546	0.0005 0.1188 0.8126	None At most 1 At most 2	0.486882 0.120460 0.041994	23.47817 4.795197 1.201237	29.79707 15.49471 3.841465	0.2234 0.8302 0.2731
At most 2 Trace test indica * denotes reject **MacKinnon-Ha	0.063036 ates 1 cointegrati ion of the hypothe aug-Michelis (199	ng eqn(s) at the esis at the 0.05 99) p-values	9.164546 0.05 level level	0.8125	At most 2 Trace test indica * denotes reject **MacKinnon-Ha	0.041994 ites no cointegra ion of the hypothe aug-Michelis (199	1.201237 tion at the 0.05 esis at the 0.05 99) p-values	3.841465 level level	0.2731

Johansen Test with Model 4:

	Johansen Cointegration Test	
Date: 05/09/23 Time: 14:	13	
Sample (adjusted): 1994	2021	
Included observations: 28	after adjustments	
Trend assumption: Linear	r deterministic trend (restricted)	
Series: LOGPROD LOGP	UBLOGPRIV	
Exogenous series: D1 D2	2 D3	
Warning: Critical values a	ssume no exogenous series	
Lags interval (in first differ	rences): 1 to 2	
the second s	5° 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7	

Unrestricted Cointegration Rank Test (Trace)

=

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None *	0.629524	49.48626	42.91525	0.0097
At most 1	0.485658	21.68317	25.87211	0.1522
At most 2	0.103746	3.066872	12.51798	0.8685

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

Weak Exogeneity Test for logPROD
[A(1,1) = 0] in VECM:

Weak Exogeneity Test for logPUB [A(2,1) = 0] in VECM:

	I-statistics in []		
wintegration Restrictio A(1,1) = 0 convergence achieved of all cointegrating ver R test for binding restr hi-square(1) robability	after 16 iterations. tors are identified ictions (rank = 1): 8.501448 0.003549		
Cointegrating Eq.	CointEg1		
LOGPROD(-1)	35.78152		
LOGPUB(-1)	-0.813060		
LOGPRIV(-1)	-13.88876		
c	32.81176		
Error Correction:	DILOGPROD	D(LOGPUB)	D(LOGPRIV)
CointEq1	0.000000 (0.00000) [NA]	-0.121430 (0.02297) [-5.29074]	0.032600 (0.01324) [2.46222]
D(LOGPROD(-1))	0.011066 (0.21523) [0.05141]	-2.085188 (1.26437) [-1.64920]	2.315898 (0.82394) [.2.81061]
D(LOGPROD(-2))	0.071379 (0.21836) [0.32688]	-1,118298 (1.28276) [-0.87179]	1.069925 (0.83593) [1.27993]
D(LOGPUB(-1))	0.062691 (0.03708) [1.69596]	-0.482222 (0.21784) (-2.21367)	0.158504 (0.14196) [1.11606]
D(LOGPUB(-2))	-0.007495 (0.03687) (-0.20328)	0.202965 (0.21658) (0.93715)	-0.148784 (0.14114) 1-1.054201
D(LOGPRIV(-1))	0.019697 (0.07486) [0.26580]	-1.847342 (0.43974) (-4.20101)	0.224057 (0.28656) [0.78188]
D(LOGPRIV(-2))	-0.042565 (0.06831) [-0.48200]	-0.420321 (0.51876) [-0.81024]	0.166420 (0.33806) (0.49228)
D1	-0.005475 (0.01182) [-0.46315]	-0.246820 (0.06944) [-3.58311]	0.019894 (0.04525) [0.43962]
02	-0.028088 (0.01611) [-1.74304]	0.201449 (0.09466) [2.12807]	-0.048033 (0.06169) [-0.77864]
03	0.000275 (0.02120) [0.01298]	-0.046891 (0.12456) [-0.37645]	-0.204959 (0.08117) [-2.52501]
4.050			CARDON NO.
uared 8-squared sq. resids equation tistic	0.396322 0.092982 0.007213 0.020018 1.307543 75.96659 -4.711809	0.700931 0.551396 0.249913 0.117595 4.687414 26.38970 1.170693 0.694906	0.405019 0.107529 0.105705 0.070032 1.361454 38.38002 2.027144 1.551357 0.059674
kelihood # AIC #rz SC i dependent dependent	-4.236112 - 0.027437 0.021019	0.040410 0.175572	0.081118

Vector Error Correction E Date: 05/10/23 Time: 01 Sample (adjusted): 1994 Included observations: 28 Standard errors in () & I-	stimates 1:35 2021 3 after adjustmen statistics in []	ta.	
Cointegration Restrictions A(2,1) = 0 Convergence achieved at Not all cointegrating vecto LR test for binding matric Chi-square(1) Destender	Rer 30 iterations. ors are identified tions (rank = 1): 11.56710 0.000010		
Probability	0.000675		
Consegrating Eq.	Conteq		
LOGPHOD(-1)	2.296660		
LOGPUB(-1)	-0.808782		
LOGPRIV(-1)	-1.343944		
c	25.64831		
Error Correction:	D(LOGPROD) D(LOGPUB)	D(LOGPRIV)
CointEq1	-0.015038 (0.00329) [-4.57557]	0.000000 (0.00000) [PLA]	-0.038180 (0.01332) [-2.86710]
D(LOGPROD(-1))	-0.434899 (0.21227) [-2.04883]	-4.012671 (2.03579) [-1.97107]	1.498064 (0.99304) [1.50957]
D(LOGPROD(-2))	-0.261081 (0.20088) [-1.30112]	-2.323764 (1.92446) [-1.20740]	0.364065 (0.93874) [0.38782]
D(LOGPUB(-1))	0.051097 (0.02745) [1.06149]	-0.146468 (0.26326) 1-0.55636]	-0.025292 (0.12842) (-0.19695)
D(LOGPUB(-2))	-0.001626 (0.02913) 1-0.055621	0.372149 (0.27938) (1.33208)	-0.198358 (0.13628) (-1.45555)
D(LOGPRIV(-1))	0.057716 (0.04816)	-0.834594 (0.46193) 8-1.806751	-0.062693 (0.22533) 1-0.279121
D(LOGPRIV(-2))	-0.036579 (0.05831) 1-0.627301	0.668109 (0.55825) (1.19480)	-0.268303 (0.27280) I-0.963511
D1	-0.008009 (0.00830) (-0.96777)	-0.124242 (0.08020) (-1.54909)	-0.041590 (0.03912) 1-1.063071
02	-0.032814 (0.01289) [-2.54556]	0.140446 (0.12563) (1.13601)	-0.039668 (0.06031)]-0.65777]
DB	-0.008483 (0.01733) [-0.48946]	-0.068057 (0.16622) [-0.40943]	-0.227997 (0.05108) [-2.81191]
	[.e.mand]	ferend	120101
I-squared d). R-squared um sq. resids E. equation -statistic og likelhood kalke AIC	0.605720 0.408580 0.004703 0.016165 3.072535 81.95348 -6.139534	0.480211 0.220316 0.432617 0.155030 1.847714 18.65123 -0.617945	0.420597 0.130896 0.102938 0.075822 1.451829 38.75145 -2.053675
chwarz SC lean dependent .D. dependent	-4.663747 0.027437 0.021019	-0.142157 0.040410 0.175572	-1.577887 0.059674 0.081118
	e (dof adi.)	2.355-08	

/eak Exoge	neity Te	st for l	ogPRIV
A(3,1) = 0]	in VEC	M:	
Ved	tar Error Correction	. Estimates	
Vector Error Connection Estimates Date: 051/023 Trime: 01:05 Samote (adjusted): 1964-2021 Included observations: 22 adher adjustments Standard errors in () & I-statistics in []			
Cointegration Restriction A(3,1) = 0	this		
Not all contegrating vect LR test for binding restric Chi-square(1)	tors are identified dions (rank = 1) 0.009400		
Contegrating Eq.	ContEq1		
LOGPROD(-1)	25.59911		
LOGPUB(+1)	-1.006195		
LOGPRWI-1)	-10.17036		
c	38.30260		
Enur Correction:	D(LOGPROD)	D(LOGPUB)	D(LOGPRIV)
CointEq1	-0.010482 (0.00300)	-0.091625 (0.02175)	0.000000 (0.00000)
DI ODPRODUTE	10.181367	-5425441	2 250576
upper model ()	(0.29530) [-0.88619]	(1.47018) [-2.45383]	(0.90854) [2.48705]
D(LOGPROD(-2))	-0.080796 (0.20431) [-0.39546]	-2.211056 (1,47049) [-1.50361]	0.975313 (0.90504) [1.07765]
D(LOGPUB(-1))	0.044172 (0.03309) (1.33488)	-0.429786 (0.23817) (-1.80453)	0.068796 (0.14659) (0.46952)
D(LOGPUB(-2))	-0.010296 (0.03260)	0.255644 (0.23463)	-0.180833 (0.14440)
D(LOGPRIV(-1))	0.006845 (0.06165) (0.111029	-1.508047 (0.44375) (-3.39844)	0.035021 (0.27311) 1.0.126231
D(LOGPRIV(-2))	-0.076754 (0.07524) [-1.02013]	-0.138144 (0.54153) (-0.25510)	-0.075308 (0.33329) [-0.22595]
D1	-0.011277 (0.01040) [-1.06484]	-0.224339 (0.07482) [-2.99838]	-0.011350 (0.04605) [-0.24647]
D2	-0.028744 (0.01427) [-2.01384]	0.175025 (0.10273) (1.70375]	-0.039367 (0.06323) [-0.62264]
D3	-0.004348 (0.01900) [-0.22879]	-0.075271 (0.13677) [-0.55036]	-0.209845 (0.08417) [-2.49297]
R-squared	0.519923	0.643560	0.367479
Adj. R-squared Sum sq. resids S.E. equation F-statistic Los likelihood	0.279884 0.005727 0.017837 2.165997 79.19709	0.485340 0.296663 0.128379 3.611040 23.93282	0.051219 0.112375 0.079013 1.161950 37.52343
Akaike AIC Schwarz SC Mean dependent S.D. dependent	-4.942649 -4.456862 0.027437	-0.995202 -0.519414 0.040410 0.175572	-1.965959 -1.490172 0.059674
Determinant resid covari Determinant resid covari	ance (dof adj.)	1.92E-08 5.10E-09	0.001110
Log Ikelihood	ance	5.108-09	
·	Vector Error Corre	ection Estimate	н
Akaike information of Schwarz criterion Number of coefficient	riterion	-8.150 -6.532 34	635 959

Pairwise Granger Causality Tests:

a) With lag 4

Pairwise Granger Causality Tests Date: 05/09/23 Time: 16:51 Sample: 1991 2021 Lags: 4			
Null Hypothesis:	Obs	F-Statistic	Prob.
LOGPUB does not Granger Cause LOGPROD LOGPROD does not Granger Cause LOGPUB	27	3.31201 1.96296	0.0336
LOGPRIV does not Granger Cause LOGPROD LOGPROD does not Granger Cause LOGPRIV	27	0.58067 2.97654	0.6805
LOGPRIV does not Granger Cause LOGPUB LOGPUB does not Granger Cause LOGPRIV	27	3.51702 0.82024	0.0274 0.5290

b) With lag 5

Pairwise Granger Causality Tests Date: 05/09/23 Time: 16:51 Sample: 1991 2021 Lags: 5			
Null Hypothesis:	Obs	F-Statistic	Prob.
LOGPUB does not Granger Cause LOGPROD LOGPROD does not Granger Cause LOGPUB	26	3.60122 3.76143	0.0244
LOGPRIV does not Granger Cause LOGPROD LOGPROD does not Granger Cause LOGPRIV	26	0.24954 1.75329	0.9336
LOGPRIV does not Granger Cause LOGPUB LOGPUB does not Granger Cause LOGPRIV	26	2.76772 0.58889	0.0577