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Abstract 

Ecosystem structure and function depends on the local and regional species pools, climate, 

geology, and type and frequency of disturbances. Tropical rain forests have long been 

growing in relatively stable climatic conditions and little disturbances until recent decades, 

when large-scale of land conversion into croplands and forest impacts by selective logging 

activities and forest fires have been more frequently observed. Selective logging causes forest 

degradation, which requires a rigorous monitoring system to control and mitigate forest 

impacts and recovery. Overtime forest disturbances and recovery can be estimated by using 

vegetation indices derived from remotely sensed data that enable us to distinguish disturbed 

from undisturbed forests and estimate the degree of those disturbances. This study aimed to 

assess the suitability of the Modified Soil Adjusted Vegetation Index (MSAVI) to detect 

selectively logged forests and estimate the forest recovery structure in a study site in the state 

of Pará, Eastern Amazon region. We retrieved the MSAVI from Landsat imagery to assess 

forest impacts by selective logging before and after logging. The estimated MSAVI index 

before and after logging activities were significantly different and enabled us to distinguish 

forest recovery structures after selective logging in the study site. Our methodological 

approach can be used to monitor selective logging activities and support planning of 

Sustainable Forest Management in tropical regions. 

Keywords: Brazilian Amazon, Landsat, MSAVI, Remote sensing, Spatial and time-Series, 

Google Earth Engine 

1. Introduction 

Tropical forests provide a range of ecosystem services such as provisioning (bio-diversity 

richness, forest production), supporting (biomass production, oxygen, water flow regulation), 

and cultural (cultural diversity, ecotourism) (Carvalho et al., 2019; Foley et al., 2005; Hansen 

et al., 2013). Tropical forests are a critical component of the climate system and guarantee the 

mitigation of planetary environmental problems, such as climate change (Bustamante et al., 

2016). The rapidly increasing demand of forest products and agricultural land, coupled with 

land speculation has led to deforestation and forest degradation, causing several social, 

economic, and environmental impacts in tropical regions (Matricardi et al., 2010; Tavani et 

al., 2009). For example, more than 400 M ha of native forests within permanent forest estates 

have been selectively logged by 2010 in tropical regions (Blaser et al., 2011). Matricardi et al. 
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(2020) estimated that approximately 120 M hectares of tropical forests were selectively 

logged between 1992 and 2014 in the Brazilian Amazon. A total of 11.6 million m3 of 

roundwood production from tropical forests in 2018 have been reported by (IBGE, 2019). 

 Deforestation in the Brazilian Amazon has directly impacted an average of 19,625 km2 

year-1 between 1996 and 2005, an average of 10,660 km2 year-1 between 2006 to 2012 

(INPE, 2019). Recently, there is an increasing trend of deforestation in 2021 (13,235 km2) 

compared to 2019 (10,129 km2) (PRODES, 2021). Most timber produced (2.7 M m3 in 2020) 

in the state of Pará, Brazil, is selectively logged from previously approved permanent forest 

estates in the state of Pará (PARÁ, 2019). However, illegal logging is prevalent in that State 

and 31% of legal selective logging reported between 2015 and 2016 showed technical 

inconsistencies (Cardoso & Souza Jr., 2017). 

Initiatives of monitoring forest degradation in the Brazilian Amazon includes the Brazilian 

National Institute for Space Research (INPE), which has been applying CBERS and 

LANDSAT imagery and spectral mixture analysis to monitor forest degradation by logging 

and fires in the Amazon region. There were DETEX project (Detection of Selective Logging) 

and the DEGRAD project (Forest Degradation Mapping in the Brazilian Amazon), both have 

been discontinued in 2016. Monitoring overall forest degradation types has been included in 

the deforestation detection system using a near time real detection approach to estimate forest 

cover change and deforestation DETER-B (Diniz et al., 2015). 

A few studies based on remote sensing to assess the structure recovery caused by selective 

logging in forest management areas have been developed and applied. Land-sat images have 

been used to quantify forest disturbances by selective logging activities and fires at a 

resolution of 30 m (Matricardi et al., 2010, 2013, 2020), as well as to detect and track the 

various types of logging activities (Asner et al., 2002; Tritsch et al., 2016). Methodological 

approaches based on satellite images to detect selective logging include the Carnegie Landsat 

Analysis System (CLAS) (Asner et al., 2005, 2009), texture analysis (Matricardi et al., 2010) 

and spectral mixture analysis (Souza et al., 2005). The study developed by (Souza et al., 2005) 

was based on the Normalized Difference Fraction Index (NDFI) retrieved from spectral 

mixture analysis to map canopy damage from selective logging and forest fires. 

Forest monitoring using satellite images conducted by governmental programs in Brazil (e.g., 

DETEX and PRODES) have shown some limitations because they mostly detect forest 

degradation and deforestation. However, few studies have been conducted to assess the 

impacts of forest structure and forest recovery following logging activities in the Amazon 

region, as was conducted in our study.  

For this work we posed the following research question: How does the identification of 

logged and unlogged areas by multi-date analysis of the MSAVI index obtained from Landsat 

multispectral imagery allow monitoring of selective logging in Amazonian forests? In this 

analysis, we applied, and tested a methodological approach to characterization of logged and 

non-logged forest and estimate forest recovery following selectively logging activities by 

applying the MSAVI vegetation index (Qi et al., 1994) retrieved from Landsat imagery and 

applied multivariate statistical techniques (cluster analyses and Principal Component 
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analyses), to separate different areas of selective logging and their recovery in a permanent 

forest estate located in the Paragominas municipality, state of Para, Brazil. 

2. Method 

2.1 Study Site 

Our study site was a Permanent Forest Estate (PFE), encompassing a total of 121,000 

hectares, spatially located within the Rio Capim ranch, which encompasses a total of 140,658 

hectares, southwestern Paragominas municipality, state of Pará, Brazil, 217 km from the 

capital city of Belém (Figure 1). The PFE has been under a forest concession granted to a 

logging company named Cikel Brasil Verde Madeiras Ltda. This PFE has been certified by 

the Forest Stewardship Council (FSC) since 2001 (Sist and Ferreira, 2007), a partner of the 

Tropical-managed Forests Observatory (TmFO) scientific network, with permanent forest 

plot data available for monitoring, technical inspection, and validation (TmFO, 2024). 

The study site is mostly covered by dense Ombrophylous Submontane Forest (IBGE, 2012). 

The regional climate is characterized as tropical hot and humid with an annual average 

precipitation of 1,800 mm, with a well-defined dry season that occurs from May to October 

every year, annual average temperature of 26 ºC and relative humidity of 81% (Alvares et al., 

2013). The soils are mainly Yellow Latosols and Yellow Argisols, and Plintosols. Geisols and 

Neossols are sparsely observed in the study site (Rodrigues et al., 2003). 

 

Figure 1. Spatial location of the study site, a Permanent Forest Estate encompassing 121,000 

hectares, within the rio Capim ranch, in Paragominas municipality, state of Pará, Brazil. The 

Annual Production Units (APU) 4, 6, 7, 10, and 13 at Working Unit (WU) 5 were selectively 

logged in 2000, 2003, 2004, 2007, and 2011, respectively. The APU 13 WU 40 had been 

selectively logged twice, in 1997 and 2011 
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2.2 Data Sources and Processing 

Our study included seven forest sites, corresponding to different APUs (4, 6, 7, 10, 13WU5 

and 13WU40), selectively logged in 2000, 2003, 2004, 2007 and 1997 and 2011, respectively 

(Table 1). APU 8 was not selectively logged. The pre-selective logging date was chosen 

before pre-exploration activities were initiated; and the post-exploration date was chosen in 

2015 to identify recovery on the different dates when selective logging was conducted. We 

selected a work unit (WU) within each APU. In each WU eight logging patios of 6.25 ha each 

were selected, corresponding to a total sampling area of 50 ha per APU/WU. A total of 30 

m3/ha logging intensity was adopted by the logging company in the study area. The 

vegetation index was retrieved from the Landsat-5 TM (Thematic Mapper) and Landsat 8 

OLI (Operational Land Imager) images, and the vegetation index average was estimated for 

each WU. 

We selected and subset each Landsat imagery for the 50 ha- WUs (Figure 1) of selectively 

logged forests in different years (Table 1). The MSAVI developed by Qi et al. (1994) was 

retrieved from Landsat 5 (TM) and Landsat 8 (OLI), surface reflectance images, available on 

the Google Earth Engine (GEE) platform, using the following equations (Equation 1 and 2) 

on Google Earth Engine platform: 

                          (1) 

where: nir = surface reflectance at near infrared band, red = surface reflectance at red band, 

L = [(nir − red) ∗ s + 1 + nir + red]2 − 8.0 ∗ 𝑠 ∗ (𝑛𝑖𝑟 − 𝑟𝑒𝑑)           (2) 

where: s = 1.2 (applied to maximize reduction of soil effects on the vegetation signal). 

2.3 Statistical Analyses 

All statistical analyses were carried out using R software version 4.0.1. (R Core Team, 2018). 

A statistical test was applied using mean values of MSAVI corresponding to each WU used in 

this analysis. Based on the ANOVA results, post-hoc analysis using Tukey's HSD (Honest 

Significant Difference) test to identify significant differences between those selectively 

logged and non-logged WUs. Additionally, we used two multi-variate statistical analyses: the 

first method cluster analysis, once we have the similarity between objects, we group them 

into clusters. Clusters are formed by partitioning of the dendrogram, by cutting it at a fixed 

height and considering each of the resulting subtrees as a cluster. To assess similarity among 

the WUs: Second used the Principal Components Analysis (PCA) were performed using the 

vegan package (Oksanen et al., 2019) and the factoextra package (Kassambara et al., 2016). 

By applying the Bray-Curtis distance coefficient, a metric coefficient commonly used for 

binary data (Dufrêne and Legendre, 1997) and the Dissimilarity index based Euclidean 

distance, we selected the best agglomerative hierarchical classification among WPGMA, 

simple linkage, complete linkage, Ward grouping, and UPGMA. As suggested by Borcard et 

al. (2018), we applied the dissimilarity dendrogram for every pair of points to identify the 

best clustering model for the distance matrix in our analysis. 
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To detect which variables are most related to the gradual changes in MSAVI across the 168 

samples on the three dates, and to identify the recovery of areas under selective cutting 

through the mean and standard deviation values of the vegetation index, multivariate 

ordination procedures were applied assuming that there were underlying gradients within the 

dataset. Gradient differences in MSAVI were estimated using a multidimensional ordination 

space using similarity relations. The ordination was used to reduce the number of variables as 

representatively as possible. An unconstrained linear PCA was applied in our analysis. An 

ordination analysis was displayed as two-dimensional scatter plot of samples where the 

explanatory variables are displayed as arrows in which the point from the origin of ordinates 

in the direction where samples with above average values of a variable are located. The 

length of the arrows represents the relevance of each variable. 

Table 1. Acquisition dates of Landsat images used in this analysis 

APU Image acquisition date 

Before logging Selectively logged After logging 

4 2000 2001 2015 

6 2000 2003 2015 

7 2002 2004 2015 

8 2002 2004* 2015 

10 2006 2007 2015 

13 - WU5 2009 2011 2015 

13 - WU40 1995 1997 and 2011 2015 

* The APU 8 has not been selectively logged; The UT 40 had been selectively logged in 1997 and 2011. 

3. Results 

We estimated the mean value of MSAVI index for each sample unit. Complementarily, an eye 

inspection was carried out using the remotely sensed imagery to observe some characteristics 

of selective logging techniques adopted in the study area, such as allocation of primary and 

secondary roads, forest trails, and logging patios. Patios and main forest roads were easily 

identified in the study area by observing those spatial patterns of logging techniques enforced 

by the logging company in the study area (Figure 2, 3, and 4). 
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Figure 2. The MSAVI retrieved from Landsat TM of selectively logged forests in a 

Permanent Forest Estate within the rio Capim ranch in 1997 

 

Figure 3. The MSAVI retrieved from Landsat TM of selectively logged forests in a 

Permanent Forest Estate within the rio Capim ranch in 2004 
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Figure 4. The MSAVI retrieved from Landsat OLI imagery of selectively logged forests in a 

Permanent Forest Estate within the rio Capim ranch in 2015 

 

Selectively logged forests showed a different pattern of canopy disturbances. Those canopy 

changes decreased MSAVI values of all sample units, except for UPA8, which had not been 

selectively logged. The UPA8 showed low average variation of MSAVI values during the 

period of analysis because it has not been affected by logging activities. Previously to 

selective logging activities, the MSAVI values showed statistical differences likely due to 

variations observed in dense rainforest microhabitats (figure 5a). Figure 5b indicates that 

those selectively logged forests tend to increase variance and average of vegetation indices, 

as it occurs a strong forest regrowth on those dam-aged forests plots in the years following 

logging activities. In this case, the vegetation averages may be like undisturbed forests, 

although the variation will be higher for disturbed forests. We also observed that the 

dynamics of forest recovery of selectively logged forest are significantly different among the 

UPAs. 
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Figure 5. Statistical analysis (box plot) of MSAVI variation by Work Unit for each year of 

analysis (before, during, and after logging). a) MSAVI variation before selective logging 

activities, b) MSAVI variation just following selective logging activities and, c) MSAVI 

variation years after selective logging activities; the boxplots show the mean ± SD. P-values 

were calculated using one-way ANOVA using Tukeys’s comparison test 

 

We observed in the similarity analysis of the MSAVI estimated for all years of our study 

period that the sampling units of the selectively logged sites formed four groups: G1(UPA6), 

G2(APU4 and APU 13.2), G3(APU13.1), G4(APU10 and APU 7). The G4 showed high 

dissimilarity of the sampling units of group five G5 (APU8), which is the undisturbed forest 

site (Figure 6). 

 

Figure 6. Cluster analysis using the Ward.D2 linkage method and Euclidean similarity 

coefficient, to compare sampling units from different study sites and MSAVI of years of 

analysis. Cophenetic Correlation Coefficient = 0.52 
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Both Principal Component Analysis (PCA) and Ward's hierarchical clustering method 

showed cluster similarities of selectively logged forests based on the MSAVI results. The 

PCA results of the mean and standard errors between selectively logged sites and the control 

area (undisturbed forests) in the study area are described in figure 7. The variations explained 

by axes one and two were 35.5% and 28%, respectively. 

 

Figure 7. Two-axis decomposition of mean and standard deviation variation of MSAVI 

estimated for different sampling units (APUs). One and two axis variations were of 35.5% 

and 28%, respectively 

 

By using vegetation indices retrieved from remote sensing we were able to understand the 

forest dynamics following selective logging activities that impact forest ecosystems. The 

MSAVI accurately showed a forest disturbance pattern within the Permanent Forest Estate 

site associated with logging activities, which varied according to each APU, mostly because 

of the adopted logging intensity and characteristics of each analysed forest sample. Tropical 

forest is a mosaic of small habitats with different floristic compositions and interaction 

between species and the environment.  

Also, we observed similarities between MSAVI estimate for selectively logged and 

undisturbed forest. In this case, we observed there occurred a strong forest regrowth where 

forest canopy has quickly recovered following logging activities. Consequently, it helped to 

increase mean values of the vegetation index at similar bases of undisturbed forests. 

Moreover, the PCA analysis with the MSAVI accurately showed a forest disturbance pattern 

within the Permanent Forest Estate site associated with logging activities, which varied 

according to each APU, mostly because of the adopted logging intensity and characteristics of 

each analysed forest sample. Also, we observed similarities between MSAVI estimate for 
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selectively logged and undisturbed forest. In this case, we observed there occurred a strong 

forest regrowth where forest canopy has quickly recovered following logging activities. 

Consequently, it helped to increase mean values of the vegetation index at similar bases of 

undisturbed forests. 

4. Discussion 

Our results indicated that the MSAVI can accurately characterize forest impacts caused by 

selective logging activities in the study region. However, as opposed to de-forestation that 

normally consist of a permanent or long-term land use change, selective logging activities are 

often followed by a faster forest regeneration process (Grecchi et al., 2017; Matricardi et al., 

2013, 2020). We observed that forest canopy within selectively logged sites will be like 

undisturbed forest 1 to 4 years following selective logging activities (Asner et al., 2009; 

Costa et al., 2019; Matricardi et al., 2013, 2020). However, the carbon stocks and ecological 

processes in tropical forests can take longer to be fully recovered from selective logging 

activities (Matricardi et al., 2013, 2020). Kennedy et al., (2010) observed a good performance 

of using Landsat series to capture different land cover dynamics of forest ecosystems, such as 

disturbance and regeneration. By using a long-term time series of Landsat images, we were 

able to accurately differentiate disturbed from undisturbed forests by logging activities in 

tropical forests. 

The MSAVI vegetation index retrieved from remotely sensed data helped to estimate forest 

impacts by selective logging. We can observe a clear pattern of forest disturbances following 

selective logging activities in the Permanent Forest Estate site. Based on our results, we 

observed that those twice selectively logged forests (1997 and 2011) showed forest canopies 

fully recovered 14 years after logging. That pattern was previously described by (Tritsch et al., 

2016), which observed that forest canopies were fully recovered even after subject to various 

intensities of forest disturbances by illegal logging activities in the municipality of 

Paragominas, state of Pará, Brazil. 

Our results indicated that the MSAVI combined with multivariate statistical analyses is a 

reliable estimator to assess forest impacts and recovering following logging activities). Costa 

et al. (2019) observed that impacts by selective logging activities may remain detectable on 

Landsat images from 1 to 3 years. In addition, the pixel-by-pixel analysis allowed to estimate 

the vegetation index variability in the three forest measurements, showing different patterns 

of forest disturbances. Also, it proved to be effective for monitoring and predicting logging 

intensities and impacts at low-cost estimates (Bourgoin et al., 2018), if there is a qualitative 

standardization of those selective logging detection classes.  

Ecologists have often suggested that the unpredictable regime of tree fall, storms, rainfall, 

temperature, disease, and other environmental factors in tropical forests usually result in 

highly heterogeneous plant communities (Mabberley, 1992; Whitmore, 1990). Each UPA 

used in this analysis showed its own pace of recovery dynamics (figure 5c) in which the 

forest recovering pattern may vary according to the adopted logging intensity (number of 

trees and volume) and topographic variations of each study site (Roy et al., 2014; Schmitt et 

al., 2020). Each UPA used in this analysis showed its own pace of recovery dynamics (figure 
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5c) in which the forest recovering pattern may vary according to the adopted logging 

intensity (number of trees and volume) and topographic variations of each study site. 

With the advancement of remote sensing technology in the last decade and its accessibility, it 

is now possible to monitor the dynamics of the landscape and its relationship with anthropic 

activities using sub-pixel information for the assessment of selective logging with remote 

sensing imagery. Tyukavina et al. (2017) used the Global Forest Change (GFC) dataset as 

stratification layer for a study of forest disturbances in the Brazilian Legal Amazon. 

Matricardi et al. (2020) observed that the total forest degradation by logging, fire, and forest 

fragmentation in the Brazilian Amazon be-tween 1992 and 2014 was greater than those 

caused by deforestation (337,427 km2 and 308,311 km2, respectively. Selective logging 

activities may cause severe forest degradation and impact biodiversity and carbon stocks 

(Montibeller et al., 2020; Morton et al., 2013; Souza et al., 2013) and, therefore, it is 

important a continuing spatiotemporal monitoring of forest dynamics. Our proposed 

methodological approach using Landsat imagery to monitor forest recovery in the state of 

Pará showed to be accurate to monitoring selective logging activities at local and regional 

scales and can support land decision makers to define strategies of land management and land 

use policies. 

Cluster grouping of MSAVI data accurately characterized a pattern of forest disturbance 

within the permanent forest farm site associated with the selective logging activities of each 

APU; primarily due to the intensity of logging adopted and the characteristics of small 

habitats with different floristic compositions and species-environment interactions. 

The spectral recovery of a vegetation index signal is directly related to forest recovery. This is 

related to an ecological process after a disturbance, referring to the re-establishment or 

development of forest biomass and canopy structure (Bartels et al. 2016). The applicability of 

emerging remote sensing technologies for the study of forest recovery patterns has been 

recognized (Teixeira et al., 2013; Galvão et al., 2015). However, there is a need for further 

studies to explore the relationship between the recovery of forest structure and biomass with 

the post-disturbance vegetation index signal. The results obtained show a great potential for 

the use of this information by regulatory and control agencies of forest management areas 

that have selective logging areas, being an indirect monitoring methodology of low cost and 

of great importance to consider these data for the evaluation of second cutting cycle areas. 

Our analysis has provided tools for mapping forest degradation and assessing forest impacts 

and recovery in tropical forests. Our approach can be easily adjusted to other remotely sensed 

data (e.g., Sentinel-2, CBERS) and study areas. Moreover, our approach is improving 

selective logging classification accuracy and allowing the integration of expert knowledge 

into the classification process, as proposed by Platt & Rapoza (2008). The MSAVI data 

combined with analyses statistical multivariate, focused on forested areas, allowed us to 

retrieve detailed information from Landsat imagery on the mapping of selective logging, 

which is an important step when regarding the limitation of the medium spatial resolution of 

Landsat. Finally, our results allowed us to assess forest disturbances by selective logging 

activities and forest dynamics overtime in the Brazilian Amazon region. 
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5. Conclusion 

Our methodological approach showed high potential to characterize forest disturbances in 

tropical forests by applying the MSAVI index. We showed that historical remotely sensed 

data can be used to create a “baseline” of the natural condition of a landscape of interest, 

especially those spatially located in permanent forest estates. Forest canopy changes can be 

distinguished from ephemeral variations in the data by comparing repeated observations to 

that “baseline”. The characterization of forest post-disturbance dynamics can then be used to 

differentiate forest degradation from deforestation in forest estates. Our approaches can be 

used to achieve a comprehensive analysis of forest ecosystem dynamics and forest 

disturbances by selective logging activities. MSAVI values tend to reach similar values of 

undisturbed forests seven year after forest interventions (disturbances). By combining 

MSAVI Index with multivariate statistical analysis, we were able to accurately detect and 

assess forest recovery following selective logging in tropical forests. 
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