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Abstract   

The Black Scholes model of option pricing constitutes the cornerstone of contemporary 

valuation theory. However, the model presupposes the existence of several unrealistic 

assumptions including the lognormal distribution of stock market price processes. In the past 

decade or so, physicists have begun to do academic research in economics. Perhaps people 

are now actively involved in an emerging field often called Econophysics. Econophysics 

applies statistical physics methods to economical, financial, and social problems. The main 

goal of this study is threefold: 1) lists out the derivation of the Black-Scholes formula through 

the partial differential equation based on the construction of the complete “hedge portfolio”, 2) 

to provide a brief introduction to the problem of pricing financial derivatives in continuous 

time; 3) and finally we will show the totality theory developed in the previous section with a 

concrete example.  
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1. INTRODUCTION  

 

Econophysics, which is nowadays a broad interdisciplinary area, but rather as a pedagogical 

introduction to the mathematics (and physics?) of financial derivatives.  

 

Econophysics concerns the use of concepts from statistical physics in the description of 

financial systems. Specifically, the scaling concepts used in probability theory, in critical 

phenomena, and in fully developed turbulent fluids. These concepts are then applied to 

financial time series to gain new insights into the behavior of financial markets.  It is also 

present a new stochastic model that displays several of the statistical properties observed in 

empirical data. 

 

Usually in the study of economic systems it is possible to investigate the system at different 

scales. But it is often impossible to write down the „microscopic‟ equation for all the 

economic entities interacting within a given system. Statistical physics concepts such as 

stochastic dynamics, short- and long-range correlations, self-similarity and scaling permit an 

understanding of the global behavior of economic systems without first having to work out a 

detailed microscopic description of the same system. Econophysics will be of interest both to 

physicists and to economists. Physicists will find the application of statistical physics 

concepts to economic systems interesting and challenging, as economic systems are among 

the most intriguing and fascinating complex systems that might be investigated. Economists 

and workers in the financial world will find useful the presentation of empirical analysis 

methods and well formulated theoretical tools that might help describe systems composed of 

a huge number of interacting subsystems. 

 

No claim of originality is made here regarding the contents of the present notes. Indeed, the 

basic theory of financial derivatives can now be found in numerous textbooks, written at a 

different mathematical levels and aiming at specific (or mixed) audiences, such as economists 

[1, 2, 3, 4], applied mathematicians [5, 6, 7, 8], physicists [9, 10, 11], etc.  

 

In this paper we attempt a generalized Black Scholes formula through an econophysics. This 

study is threefold: 1) lists out the derivation of the Black-Scholes formula through the partial 

differential equation based on the construction of the complete “hedge portfolio”, 2) to 

provide a brief introduction to the problem of pricing financial derivatives in continuous time, 

it contains what is the raison d‟etre of the present notes; 3) and finally we will show the 

totality theory developed in the previous section with a concrete example. Before I finish the 

last Section with concludes.  
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2. THE BLACK SCHOLES MODEL 

In order to facilitate continuity, we summarize below the original derivation of the Black 

Scholes model for the pricing of a European call option [1,12-15] and references therein. The 

European call option is defined as a financial contingent claim that enables a right to the 

holder thereof (but not an obligation) to buy one unit of the underlying asset at a future date 

(called the exercise date or maturity date) at a price (called the exercise price). Hence, the 

option contract, has a payoff of     ESES TT 0,max  on the maturity date where TS is 

the stock price on the maturity date and E is the exercise price.   

We consider a non-dividend paying stock, the price process of which follows the geometric 

Brownian motion with drift  tt W

tS e
 

 . The logarithm of the stock price tt SInY  follows 

the stochastic differential equation  

t tdY dt dW            (1) 

where 
tW is a regular Brownian motion representing Gaussian white noise with zero mean 

and  correlation in time i.e.    ' ' 't tE dWdW dtdt t t   on some filtered probability space 

  PFt ,,  and  and  are constants representing the long term drift and the noisiness 

(diffusion) respectively in the stock price.  

Application of Ito‟s formula yields the following SDE for the stock price process  

21

2
t t t tdS S dt S dW  

 
   
 

        (2) 

Let  ,C S t denote the instantaneous price of a call option with exercise price E  at any time 

t before maturity when the price per unit of the underlying is S . It is assumed that  ,C S t  

does not depend on the past price history of the underlying. Applying the Ito formula to 

 ,C S t yields 

2
2 2 2

2

1 1
,

2 2

C C C C C
dC S S S dt SdW

S S t SS

     
     

    
         (3) 

The original option-pricing model propounded by Fischer Black and Myron Scholes 

envisaged the construction of a “hedge portfolio”,  , consisting of the call option and a 

short sale of the underlying such that the randomness in one cancels out that in the other. For 
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this purpose, we make use of a call option together with C S   units of the underlying stock. 

 

We then have, on applying Ito‟s formula to the “hedge portfolio”,  ,:- 

   

 
   , ,

, .
C S t dC S td d C dS

C S t S
dt dt S dt S dt

  
    

  
     (4) 

 

where the term involving 
d C

dt S

 
 
 

has been assumed zero since it envisages a change in the 

portfolio composition. On substituting from eqs. (2) & (3) in (4), we obtain  

 

       2

2 2 2

2

, , , ,1 1

2 2

dC S t C S t C S t C S td C dW
S S S

dt dt S S dt t S
   

    
      

    
  (5) 

 

We note, here, that the randomness in the value of the call price emanating from the 

stochastic term in the stock price process has been eliminated completely by choosing the 

portfolio  
 ,

,
C S t

C S t S
S


  


. Hence, the portfolio   is free from any stochastic noise 

and the consequential risk attributed to the stock price process. 

 

Now 
d

dt


is nothing but the rate of change of the price of the so-called riskless bond portfolio 

i.e. the return on the riskless bond portfolio (since the equity related risk is   assumed to be 

eliminated by construction, as explained above) and must, therefore, equal the short-term 

interest rate r  i.e.  

 

d
r

dt


  .          (6) 

In the original Black Scholes model, this interest rate was assumed as the risk free interest 

rate r , further, assumed to be constant, leading to the following partial differential equation 
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for the call price:- 

  

 
     2

2 2

2

, , ,1
,

2

C S t C S t C S td
r r C S t S S

dt S t S


   
      

   
                     

 

or equivalently  

 

     
 

2

2

2

, , ,1
, 0

2

C S t C S t C S t
S rS rC S t

t SS


  
   

 
     (7) 

 

which is the famous Black Scholes PDE for option pricing with the solution:- 

 

       1 2,
r T t

C S t SN d Ee N d
 

          (8) 

 

where  

 2

1

1
log

2

S
r T t

E
d

T t





   
     

   



, 

 2

2 1

1
log

2

S
r T t

E
d d T t

T t






   
     

   
   


 and  

 

 
2

2
1

2

x
y

N y e dx





 

 

 

3. THE STANDARD MODEL OF FINANCE  

 

3.1 Portfolio dynamics and arbitrage   

Consider a financial market with only two assets: a risk-free bank account B and a stockS . 

In vector notation, we write       ,S t B t S t for the asset price vector at time t . A 

portfolio in this market consists of having an amount 0x in the bank and owing 1x stocks. 
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The vector       0 , tx t x t x t thus describes the time evolution of your portfolio in the 

 ,B S space. Note that 0ix  means a short position on the ith assets, i.e., you „owe the 

market‟ ix units of the ith asset.  

 

Let us denote by  xV t the money value of the portfolio  x t : 

0 1. ,xV x S x B x S    (9) 

 

Where the time dependence has been omitted for clarity. We shell also often suppress the 

subscript from  xV t when there is no risk of confusion about to which portfolio we are 

referring.  

 

A portfolio is called self-financing if no money is taken from it for „consumption‟ and no 

additional money is invested in it, so that any change in the portfolio value comes solely from 

changes in the assets prices. More precisely, a portfolio x is self-financing if its dynamics is 

given by  

     . , 0.xdV t x t dS t t    (10) 

 

The reason for this definition is that in the discrete-time case, i.e., , 0,1,2...,nt t n  the 

increase in wealth,      1n n nV t V t V t   , of a self-financing portfolio over the time 

interval 1n nt t  is given by  

 

     .n n nV t x t S t  
,
 (11)   

 

where      1 .n n nS t S t S t   This means that over the time interval 1n nt t  the value of 

the portfolio varies only owing to the changes in the assets prices themselves, and then at 

time 1nt  re-allocate the assets within the portfolio for the next time period. Equation (10) 

generalized this idea for the continuous-time limit. If furthermore we decide on the makeup 

of the portfolio by looking only at the current prices and not on past times, i.e., if  
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    , ,x t x t S t  

then the portfolio is said to be Markovin.                

          

3.2 The Black-Schools model for option pricing 

The two main assumption of the Black-Scholes model are:  

 

I.There are two assets in the market, a bank account B and a stock S , whose 

price dynamics are governed by the following differential equations 

,dB rBdt   (12)  

,dS Sdt SdWμ σ    (13) 

Where r is the risk-free interest rate, 0μ  is the stock mean rate of return, 0σ  is the 

volatility, and  W t is the standard Brownian motion or Wiener process.  

II.The market is free of arbitrage. 

 

Besides these two crucial hypotheses, there are additional simplifying (technical) 

assumptions, such as: (iii) there is a liquid market for the underlying asset S as well as for 

the derivative one wishes to price, (iv) there are no transaction costs (i.e., no bid-ask spread), 

and (v) unlimited short selling is allowed for an unlimited period of time. It is implied by (12) 

that there is no interest-rate spread either, that is, money is borrowed and lent at the same 

rate r . Equation (13) also implies that the stock pays no dividend. This last assumption can 

be relaxed to allow for dividend payments at a known (i.e., deterministic) rate.  

 

We shall next describe how derivatives can be “rationally‟ priced in the Black-Scholes 

model. We consider first a European call option for which a closed formula can be found. Let 

us then denoted by  , ; ,C S t K T the present value of a European call option with strike price 

K and expiration date T on the underlying stock S . For ease of notation we shell drop the 

parameters K and T and simply  ,C S t . For later use, we note here that according to Ito 

formula, with a Sμ and b Sσ , the option price C obeys the following dynamics  

 

2
2 2

2

1
.

2

C C C C
dC S S dt S dW

t S S S
μ σ σ

    
    

    
 (14)  
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In what follows, we will arrive at a partial differential equation, so called Black-Scholes 

Equation (BSE), for the option price  ,C S t . For pedagogical reasons, we will present two 

alternative derivatives of the BSE using two distinct but arguments:  

 

The  -Hedging Portfolio and 

The Replicating Portfolio  

 

The  -Hedging Portfolio 

 

In the binomial model the self financing  -hedging portfolio, we the self-financing  - 

hedging portfolio, consisting of a long position on the option and a short position on 

 stocks. The value  t of this portfolio is  

   ,t C S t S    

Since the portfolio is self-financing, it follows from (10) that  obeys the following 

dynamics 

,d dC dS    (15) 

which in (13) and (14) becomes  

2
2 2

2

1
.

2

C C C C
d S S S dt S dW

t S S S
μ σ μ σ

     
          

     
 (16)  

We can now eliminate the risk (i.e., the stochastic term containing dW ) from this portfolio 

by choosing  

C

S


 


 (17)  

Inserting this back into (16), we then find 

2
2 2

2

1

2

C C
d S dt

t S
σ

  
   

  
 (18)  

Since we now have a risk-free (i.e., purely deterministic) portfolio, it must yield the same rate 

of return as the bank account, which means that   

.d r dt    (19)  

Comparing (18) with (19) and using (15) and (17), we then obtain the Black Scholes 

Equation:  

2
2 2

2

1
0,

2

C C C
S rS rC

t S S
σ

  
  

  
 (20) 
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which must be solved to the following boundary condition  

   , max ,0 .C S T S K   (21)  

The solution to the above boundary-value problem can be found explicitly, but before going 

into that it is instructive to consider an alternative derivation of the BSE.  

 

The Replicating Portfolio  

Here we will show that it is possible to form a portfolio on the  ,B S market that replicates 

the option  ,C S t , and in the process of doing so we will arrive at the BSE. Suppose then 

that there is indeed a self-financing portfolio       , ,x t x t y t whose value  Z t equals 

the option price  ,C S t for all time t T :  

Z xB yS C   ,  (22) 

where we have omitted the time-dependence for brevity. Since the portfolio is self-financing 

it follows that  

 dZ xdB ydS rxB yS dt ySdWμ σ    
.
 (23) 

But by assumption we have Z C and so .dZ dC  Comparing (23) with (14) and 

equating the coefficients separately in both dW and dt , we obtain  

,
C

y
S





 (24)  

2
2 2

2

1
0.

2

C C
rxB S

t S
σ

 
  

 
 (25)  

Now from (22) and (24) we get that 

1
,

C
x C S

B S

 
   

 (26) 

which inserted into (25) yields again the BSE (20), as the reader can easily verify.  

 

We have thus proven, by direct construction, that the option C can we be replicated in the 

 ,B S -market by the portfolio  ,x y , where x and y are given in (26) and (24), 

respectively, with option price C being the solution of the BSE (with the corresponding 

boundary condition).            
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4. ENTIRETY IN THE BLACK – SCHOLES MODEL    

We have seen above that it is possible to replicate a European call option  ,C S t using an 

appropriate self-financing portfolio in the  ,B S market. Looking back at the arguments 

given in sec 3.4, we see that we never actually made use of the fact that the derivative in 

question was a call option – the nature of the derivative appeared only through the boundary 

condition (21). Thus, the derivation of the BSE presented there must hold for any contingent 

claim! 

 

To state this fact more precisely, let  ,F S t represent the price of an arbitrary European 

contingent claim with payoff    ,F S T S , where  is a known function. Retracing the 

steps outlined in sec 3.4, we immediately conclude that the price  ,F S t will be the solution 

to the following boundary-value problem 

2
2 2

2

1
0,

2

F F F
S rS rF

t S S
σ

  
   

  
 (27)  

   ,F S T S  (28) 

Furthermore, if we repeat the arguments of preceding sub section and transform the 

Black-Scholes equation (27) into the heat equation, we obtain that  ,F S t will be given by 

     
2
' 4 '1

, '
4

x x dx
F S t x e


 



 
τ

πτ ,

 (29) 

where  x denote the payoff function in terms of the dimensionless variable x . 

expressing this result in terms of the original variables S and t yields a generalized Black- 

Scholes formula  

 
 

 
 

 
2

2' 1
ln

2

2
0

'
, ' .

'2

Sr T t r T t
Se dS

F S t S e
ST t

σ

σ

            
     




π
 (30) 

In summary, we have shown above that the Black Scholes model is complete. A market is 

said to be complete if every contingent claim can be replicated with a self-financing portfolio 

on the primary assets. Our „proof of Entirety‟ given above is, of course, valid only for the 

case of European contingent claim with a simply payoff function  S ; it does not cover, 
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for instance, path dependent derivatives. It is possible however to give a formal proof that 

arbitrage-free models, such as the Black Scholes model, are indeed complete.  

 

Comparing the generalized Black-Scholes formula (30) with the pdf of the geometric 

Brownian motion given  

 

2

2

0

0 0 22

1

21
, , , exp

22

S
In
S

p S t S t
S

μ σ

σσ

           
      
 
 
 

τ

ττ
 (31)  

the Geometric Brownian motion is the basic model for stock price dynamics in the 

Black-Scholes framework.  

 

We see that the former can be written in a convenient way as  

     ,, ,
r T t Q

t S TF S t e E S
 

     (32)  

where  ,

Q

t SE  denotes expectation value with respect to the probability density of Geometric 

Brownian formula rμ  , initial time t , final time T , and initial value S ;  

 

In other words, the present value of a contingent claim can be computed simply as its 

discounted expected value at maturity, under an appropriate probability measure.  

              

5. CONCLUSION  

In these notes, I tried to present a basic introduction to an interdisciplinary area that has 

become known, at least among physicists working on the field, as Econophysics. I started 

out by giving the  two fundamental derivatives of Black-Scholes model for pricing financial 

derivatives. After this motivation,  I offered to introduction to the problem of pricing 

financial derivatives in continuous time with standard model of finance, namely, the 

Black-Scholes model for pricing financial derivatives. Finally, I briefly reviewed the totality 

theory developed in the previous section with concrete example. Some recent work done 

mostly, but not exclusively, by physicists that have produced evidences that the Standard 

Model of Finance (SMF) may not fully describe real markets. In this context, some possible 

extensions of the Black-Scholes model were considered. 

 

I should like to conclude by mentioning that other alternatives approaches to the problem of 

pricing financial derivatives have been proposed by physicists, using methods originally 
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developed to treat physical problems. For instance, the option pricing problem was recently 

discussed in the context of the so-called non-extensive statistical mechanics [21]. A 

“Hamiltonian formulation” for this problem was also given in which the resulting 

“generalized Black- Scholes” equation is formally solved in terms of path integrals [22].                    
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