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Abstract 

In this article we investigate the goodness-of-fit of the Heston stochastic volatility model for 
the Shanghai composite index and five Chinese stocks from different industries with the 
highest trading volume. We have jointly estimated the parameters of the Heston stochastic 
volatility for the daily, weekly and monthly timescales model by employing a kernel density 
of the empirical returns to minimize the mean-squared deviations between the theoretical and 
empirical return distributions. We find that the Heston model is able to characterize the 
empirical distribution of Chinese stock returns at the daily, weekly and monthly timescales. 

Keywords: Heston stochastic volatility model, Goodness-of-fit test, Chinese stocks, Kernel 
density 
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1. Introduction 

Empirical distribution of stock returns are often characterized by leptokurtosis, which 
conflicts with the fundamental assumption of normality of log-returns in the Black–Scholes 
model. Empirical characteristics of stock returns are often better described by models that 
allow for fat tails and high peaks. The use of stochastic processes that allow for a wider range 
of shapes for return distributions has been considered in the literature, where it is also well 
documented that stochastic volatility models or models based on jump-diffusion and pure 
jump processes significantly improve the Black-Scholes framework. Among others, some 
examples of these models are provided by Merton (1976), Madan and Seneta (1990), Heston 
(1993), Barndorff-Nielsen (1997, 1998) and Kou (2002).  

In this article we investigate the goodness-of-fit of the Heston (1993) model in the Chinese 
stock market, which can be characterized by frequent extreme returns and fatter tails 
compared to developed stock markets. In this respect, the dataset we consider also tests the 
robustness of the Heston model. To the best of our knowledge there has been no study that 
investigates the goodness-of-fit of the Heston stochastic volatility model for Chinese stocks. 
Furthermore, we propose the use of a non-parametric kernel density in the estimation of the 
Heston model, which reduces the estimation error of model parameters by smoothing the 
empirical density of log-returns.  

The Heston model is widely used in modelling stock prices and the pricing of financial 
derivatives due to three major advantages: 

1) The constant volatility assumption of the Black–Scholes model is not satisfied, and the 
implied volatilities of option prices exhibit volatility smiles. As the seminal work of Bakshi et 
al. (1997) has shown, stochastic volatility should be incorporated for pricing and internal 
consistency, and stochastic volatility modelling often yields the best performance for 
hedging; 

2) The existence of closed-form option pricing formulas. In the Heston model, closed-form 
solutions for vanilla options are given by the fast Fourier transform method of Carr and 
Madan (1998), which leads to computationally efficient pricing; 

3) The probability distribution for log-returns under the Heston model is given in closed 
form by Dragulescu and Yakovenko (2002), which leads to efficient estimation of model 
parameters from historical stock returns.  

The goodness-of-fit of the Heston model to the historical data of log-returns has been tested 
in studies by Dragulescu and Yakovenko (2002), Silva and Yakovenko (2003) and Daniel et 
al. (2005), which together show mixed results regarding the performance of the Heston model. 
Dragulescu and Yakovenko (2002) have derived the closed form of the probability 
distribution of log-returns in the Heston model to show that the Heston model provides a 
good fit to the DowJones index returns at different time intervals. However, as Daniel et al. 
(2005) has pointed out, Dragulescu and Yakovenko (2002) trimmed the dataset by removing 
extreme price movements. Without trimming, Daniel et al. (2005) have shown that the Heston 
model does not provide a good fit to the Dow Jones stock market index. Meanwhile, Silva 
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and Yakovenko (2003) have verified the goodness-of-fit of the Heston model by explaining 
the NASDAQ, DowJones and S&P 500 indices and by documenting different results for 
different dataset periods. Our results show that without trimming the dataset the Heston 
model fits the empirical distribution of index and stock returns in the Chinese stock market 
well, especially for the daily log-returns. Given the dataset’s frequent extreme events, 
sometimes the optimization routine used in the parameter estimation may fail to converge and 
alternative initial values might be needed.  

This article is organized as follows. In the next section we briefly present the Heston 
stochastic volatility model and the probability distribution of log-returns. In Section III we 
present the dataset, while in Section IV we discuss the parameter estimation via distance 
minimization. Section V presents the goodness-of-fit tests and finally Section VI offers our 
conclusions as well as recommendations for future work. 

2. The Heston Model and the Probability Distribution of Log-Returns 

In the Heston (1993) model, stock prices follow the stochastic differential equation 

 )1(
ttttt dWSdtSdS    (1) 

where  is the drift, t  is the volatility and )1(
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is given by trx tt   while the dynamics of the centred log-returns is given by 
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This equation denotes the variance by 2
tt   , which obeys the following Ornstein-Uhlenbeck 

process  

   )2(
tttt dWdtd   , (3) 

where  is the long-term mean of ,  is the rate of mean reversion, )2(
tW is a standard 

Wiener process and  is the variance noise (vol-vol) parameter. In general, the Wiener 
processes in Equations 1 and 3 may be correlated and can be written as  

 ttt dZdWdW 2)1()2( 1   , (4) 

where tZ is a Wiener process independent of )1(
tW  and ]1,1[ is the correlation coefficient. 

Dragulescu and Yakovenko (2002) have solved the forward Kolmogorov equation that 

governs the time evolution of the joint probability )|,( it xP   given the initial value of the 
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variance i  to obtain the following probability distribution of centred log-returns given a 

time lag t : 
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where )( 222
xx ipp   , xkpi  where  is the correlation coefficient between 

two Wiener processes )1(
tW and )2(

tW  and  ,  ,   and  are the parameters of the 

Heston model. 

3. Data 

To verify the goodness-of-fit of the Heston model, we have utilised daily closing prices of the 
Shanghai composite index and five stocks representing different industries with the highest 
trading volume. Namely, we consider the stock prices of China Minsheng Banking Corp. 
(Banking, 600016), Sinopec Group (Petroleum and Oil, 600028), Jiangsu Sunshine Corp. 
(Clothing and manufacturing, 600220), Shanghai Tongji Science & Technology Industrial 
Corp. (Construction, 600846), Chengdu B-ray Media Corp. (Media, 600880). In Table 1 we 
supply descriptive statistics for the daily log-returns for both the composite index and five 
stocks with their Shanghai Stock Exchange codes. 

 

Table 1. Descriptive statistics of the daily log-returns of the Chinese stocks and Shanghai 
composite index  

 Mean SD Skewness Kurtosis Min. Max. 
Shanghai Index 0.00016 0.01556 -0.0812 7.75 -0.0926 0.0940 
600016 -0.00020 0.02787 -3.4554 49.64 -0.4657 0.0962 
600028 0.00016 0.02330 -0.1875 10.12 -0.2365 0.0967 
600220 -0.00065 0.03443 -5.3728 100.35 -0.6747 0.0968 
600846 -0.00039 0.03517 -1.8830 32.16 -0.5205 0.2801 
600880 0.000033 0.03097 -4.7979 92.64 -0.6513 0.0957 

 

Since for each stock the dates of the initial public offerings differ, we have therefore 
considered the longest available historical dataset for each stock. For the Shanghai composite 
index, we consider the period from 1 January 1998 to 6 May 2013. Daily, weekly and 
monthly log-returns are given by the following time series. Daily log-returns are calculated as 
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 tt
Daily
t SSR /ln 1  for t 1, 2,...., N . Weekly log-returns we calculate  tt

Weekly
t SSR /ln 4  

for )5/(,....,16,11,6,1 Nfloort  and monthly log-returns are calculated 

as  tt
Monthly
t SSR /ln 21  for )22/(,....,55,23,1 Nfloort  . No intersecting observations have 

been used in the above calculations, and in translation weekly and monthly returns are treated 
as stock price paths. The advantage of calculating the returns as above is discussed in Daniel 
et al. (2005).  

Daniel et al. (2005) has pointed out that Dragulescu and Yakovenko (2002) trimmed the 
dataset by, for example, discarding observations that exceeded  4% in daily returns. Since 
trimming the dataset reduces the fairness of the empirical analysis presented in Dragulescu 
and Yakovenko (2002), we do not trim the dataset by removing extreme values in the dataset. 

4. Parameter Estimation 

Parameter estimation can be done utilizing historical log-returns or options data or both. For 
example in the study by Eraker (2004) likelihood based inference is used to estimate 
stochastic volatility models jointly using options and stock price data. Although, option prices 
reflect information regarding the risk neutral density, in China there are no traded equity 
options in an organized exchange. Under the Heston model stock returns at different 
timescales are assumed to have the same parameters. Therefore, minimization of the distance 
between theoretical and empirical distributions is a suitable approach to fit a single set of 
parameters for different timescales jointly.  

Empirical distribution of log-returns is often calculated by partitioning the space of 
log-returns. As provided by Dragulescu and Yakovenko (2002), the domain of log-returns 
can be partitioned into equally spaced bins of width r  to allow simple counting of the 
number of log-returns belonging to each bin. Relative frequencies are then obtained by 

dividing these frequencies by the total sample size to yield the empirical distribution )(* xPt .  

To obtain model parameters, Dragulescu and Yakovenko (2002) minimized the following 
objective function with respect to the parameters of the Heston model 

     
tx

Heston
tt xPxP

,

2* |)(ln)(ln|  (7) 

where the sum is taken over all available x  and t . Since we work with a smaller dataset of 

log-returns, we have considered the time intervals 22,5,1t  which correspond to daily, 

weekly and monthly log-returns. To improve the convergence of the optimization routine 
used, we smoothed the empirical distribution of log-returns and revised the objective function 
in Equation 7 as  
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where  )(* xPK t  is the kernel density (Note 1) calculated from the empirical distribution of 

log-returns for each time interval 22,5,1t . From Equation 8, a single set of parameters 

fitting the Heston model to daily, weekly and monthly log-returns jointly is obtained. Tables 
2 and 3 supplies the estimated parameters of the Heston model for the daily and joint 
estimation at the daily, weekly and monthly intervals. In Figure 1 we plot the fitted Heston 
probability distribution function versus the empirical distribution for daily, weekly and 
monthly log-returns. Figure 1 thus shows that the Heston model fits the daily log-returns 
particularly well. In Figures 2, 3, and 4 we plot the fit of the Heston model for the highly 
traded stocks at the Shanghai Stock Exchange. From these figures it is clear that the Heston 
model can characterize the behaviour of empirical log-returns for at least the daily time 
interval. 

 

Table 2. Estimated parameters for the Heston model for daily log-returns 

Parameters      
Shanghai Index 0.0002515 0.0348 0.00467 -0.1202 
600016 0.0004907 0.1705 0.01037 -0.0843 
600028 0.0004577 0.7498 0.02803 0.19033 
600220 0.0007333 24.916 0.79008 -0.0445 
600846 0.0009454 23.545 0.79049 -0.0547 
600880 0.0006919 0.1353 0.01412 0.1773 

Table 3. Estimated parameters for the Heston model for the joint estimationat daily, weekly 
and monthly timescales 

Parameters       
Shanghai Index 0.0002775 0.0883 0.00852 -0.0699 
600016 0.000479 0.0752 0.00649 -0.1154 
600028 0.0004212 0.2554 0.01278 0.27948 
600220 0.0006060 0.1511 0.01045 -0.1249 
600846 0.0006893 2.8013 0.03614 -0.1273 
600880 0.0006892 0.1413 0.01441 0.17889 

 

If Equation 8 is maximized for only the daily log-returns (i.e., t = 1), then all stocks 
considered yield convergence in the optimization routine. Reducing the number of time 
intervals in Equation 8 thus naturally improves the convergence and fit of the Heston model.  
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Figure 1. Fitted probability density function of the Heston model versus the empirical 

distribution of log-returns for the Shanghai composite index 

Note. First subplot presents the jointly fitted Heston density for the daily, weekly, and monthly timescales, 

whereas other subplots shows the fit of the Heston model for daily, weekly and monthly returns separately. 

 

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

Log-return

F
re

qu
en

cy

 

 
Heston(daily)
Empirical(daily)
Heston(weekly)
Empirical(weekly)
Heston(monthly)
Empirical(monthly)

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

Daily Log-return

F
re

qu
en

cy

 

 
Heston
Normal
Empirical

-0.1 -0.05 0 0.05 0.1 0.15
0

2

4

6

8

10

12

Weekly Log-return

F
re

qu
en

cy

 

 
Heston
Normal
Empirical

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Monthly Log-return

F
re

qu
en

cy

 

 
Heston
Normal
Empirical

 
Figure 2. Fitted probability density function of the Heston model versus the empirical 

distribution of log-returns for stock 600016 

Note. First subplot presents the jointly fitted Heston density for the daily, weekly, and monthly timescales, 

whereas other subplots shows the fit of the Heston model for daily, weekly and monthly returns separately. 
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Figure 3. Fitted probability density function of the Heston model versus the empirical 
distribution of log-returns for stock 600028 

Note. First subplot presents the jointly fitted Heston density for the daily, weekly, and monthly timescales, 

whereas other subplots shows the fit of the Heston model for daily, weekly and monthly returns separately. 
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Figure 4. Fitted probability density function of the Heston model versus the empirical 
distribution of log-returns for stock 600880 

Note. First subplot presents the jointly fitted Heston density for the daily, weekly, and monthly timescales, 

whereas other subplots shows the fit of the Heston model for daily, weekly and monthly returns separately. 
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5. Goodness-of-Fit Tests 

Once the model parameters were estimated for the common set of daily, weekly and monthly 
log-returns, we tested the goodness-of-fit of the Heston model using via three statistical tests. 
In this section we comment briefly on the implemented tests and present our results. 

The chi-square goodness-of-fit test is a discrete goodness-of-fit test in which the range of 
observations is divided into k bins. For this test we have considered the bins 

  ,025.0,01.0,005.0,001.0,001.0,005.0,01.0,025.0, ,  

),05.0,035.0,025.0,0175.0,01.0,005.0,0015.0

,0015.0,005.0,01.0,0175.0,025.0,035.0,05.0,(




, 

  ,12.0,08.0,05.0,02.0,01.0,01.0,02.0,05.0,08.0,12.0, , 

for the daily, weekly and monthly time intervals, respectively. The above intervals were 
chosen so that the observed frequencies in each bin would be similar. The degree of freedom 

of the chi-square test equals mbinsdof  1# , where m is the number of parameters of the 

model being tested. The corresponding critical values at a 95% confidence level for the 
chi-square goodness-of-fit test of the Heston model at daily, weekly and monthly time 
intervals are given as 11.07, 19.67 and 14.07, respectively. As the benchmark case for the 
normal distribution, the critical values are given as 14.07, 21.03 and 15.51, for daily, weekly 
and monthly time intervals, respectively. 

The Anderson–Darling (AD) (1952) goodness-of-fit test provides a good measure of distance 
between empirical and theoretical densities. Therefore, a smaller test suggests a better fit to 
the data, whereas the Kolmogorov–Smirnov (KS) test measures the maximal discrepancy 
between the expected and observed cumulative distributions of log-returns. To calculate the 
KS statistic, we used the empirical and theoretical cumulative distribution functions and 
computed the maximum discrepancy between them. Since the estimators and goodness-of-fit 
test statistics were calculated from the same dataset, both AD and KS test statistics are not 
sufficient to accept the tested model. Chi-square test does not present this problem, thus 
critical values are available to test the null hypothesis. 

In Tables 4, 5 and 6 we present the goodness-of-fit test results for the daily, weekly and 
monthly log-returns, respectively. Normal distribution, which was used as a benchmark 
scenario, is rejected by the chi-square goodness-of-fit test for all stocks and the composite 
index.  

 

 

 

 

 

 



International Finance and Banking 

2014, Vol. 1, No. 1 

 83

Table 4. Chi-square, Anderson-Darling and Kolmogorov-Smirnov goodness-of-fit test results 
for daily log-returns, where critical values at a 95% confidence level for the chi-square 
goodness-of-fit test of the Heston model and normal distribution are given as 11.07 and 14.07, 
respectively 

 Chi-square Anderson–Darling Kolmogorov–Smirnov
 Normal Heston Normal Heston Normal Heston 
Shanghai Index 407.60* 2.80 62.45 4.93 0.0791 0.0488 
600016 466.93* 0.83 71.60 3.03 0.0974 0.0280 
600028 297.50* 0.88 43.45 2.16 0.0803 0.0290 
600220 704.31* 1.86 47.25 7.01 0.1138 0.0312 
600846 590.48* 21.77* 52.98 19.15 0.0910 0.0254 
600880 752.08* 1.66 94.89 1.90 0.0993 0.0187 

Note. *Rejected at the 95% confidence level. 

 

Table 4 shows that the Heston model cannot be rejected at a 95% confidence level for the 
daily log-returns, whereas the normal distribution can clearly be rejected. AD statistics 
indicate that the distance between the empirical and theoretical distributions is small. In Table 
5, we present results for the weekly log-returns, for which the Heston model also provides a 
good fit except for the Shanghai composite index. Table 6 also shows that the Heston model 
has a good fit for monthly log-returns. Except for monthly log-returns, normal distribution 
can be consistently rejected for all stocks and the composite index.  

 

Table 5. Chi-square, Anderson-Darling and Kolmogorov-Smirnov goodness-of-fit test results 
for weekly log-returns, where critical values at a 95% confidence level for the chi-square 
goodness-of-fit test of the Heston model and normal distribution are given as 19.67 and 21.03, 
respectively 

 Chi-square Anderson–Darling Kolmogorov–Smirnov
 Normal Heston Normal Heston Normal Heston 
Shanghai Index 46.61* 31.77* 4.89 1.84 0.0561 0.0355 
600016 97.56* 2.27 13.04 2.34 0.1111 0.0591 
600028 54.95* 4.58 6.64 1.80 0.0792 0.0521 
600220 162.95* 4.25 21.87 2.96 0.1320 0.0614 
600846 140.09* 16.40 19.42 6.10 0.0955 0.0638 
600880 116.60* 2.69 15.92 2.82 0.1091 0.0538 

Note. *Rejected at the 95% confidence level. 
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Table 6. Chi-square, Anderson–Darling and Kolmogorov–Smirnov goodness-of-fit test results 
for monthly log-returns, where critical values at a 95% confidence level for the chi-square 
goodness-of-fit test of the Heston model and normal distribution are given as 14.07 and 15.51, 
respectively 

 Chi-square Anderson–Darling Kolmogorov–Smirnov 
 Normal Heston Normal Heston Normal Heston 
Shanghai Index 12.73 6.64 0.41 0.90 0.0429 0.0609 
600016 8.11 3.03 0.99 1.04 0.0775 0.0721 
600028 13.87 0.90 1.49 1.09 0.0688 0.0724 
600220 17.99 0.64 2.05 1.46 0.0979 0.0573 
600846 14.59 1.21 2.00 3.23 0.0859 0.0544 
600880 7.99 8.14 1.17 1.82 0.0697 0.0788 

Note. *Rejected at the 95% confidence level. 

 

6. Conclusion and Future Work 

We investigated the goodness-of-fit of the Heston stochastic volatility model to the empirical 
distribution of stock and index returns in the Chinese stock market. This article shows that the 
Heston model provides a good fit for Chinese stocks, especially for their daily log-returns. It 
should be noted that we fit a single set of model parameters that is able to fit to the daily, 
weekly and monthly log-returns simultaneously. Overall, the goodness-of-fit test statistics 
provide evidence that the Heston model cannot be rejected, especially for daily log-returns. 
However, one drawback of using the Heston model is the difficulty in the convergence of 
parameter estimation, which may be attributed to frequent extreme movements in Chinese 
stock returns. To improve the parameter estimation optimization, we smoothed the empirical 
distribution of log-returns via a kernel density.  

Future work should focus on what these results imply for risk management. Since the Heston 
model can capture the heavy-tailed empirical distributions of Chinese stocks, it might also 
perform well in estimating quantiles and risk measures, such as the value-at-risk.  
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Note  

Note 1. Kernel density smoothes the empirical distribution of log-returns; the MATLAB 
function ‘ksdensity(.)’ is implemented. Once a smoothed empirical probability distribution is 
obtained, we maximize the objective function in Equation 8 by employing the constrained 
maximization function ‘fmincons(.)’ in MATLAB. 
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