

Influence of Demographic Factors on Investment Performance

Arumugam Subramaniam (Corresponding author)

Ph. D Scholar, Faculty of Post Graduate Studies, University of Jaffina

Jaffina, Sri Lanka

E-mail: fmsmani@yahoo.com

Thirunavukkarasu Velnampy

Professor in Accounting, Faculty of Management Studies and Commerce

University of Jaffna, Jaffna, Sri Lanka

Received: May 26, 2017 Accepted: June 6, 2017 Published: June 9, 2017

doi:10.5296/ijafr.v7i1.11294 URL: https://doi.org/10.5296/ijafr.v7i1.11294

Abstract

Investment involves commitment of money with the expectation of earning additional return. Investment performance generally indicates the outcome of an investment programme and it depends on several factors. When making investment different type of investors behave in different manner. Thus it is important to examine the influence of demographic factors of investors on investment performance. The objective of the study is to investigate the influence of demographic factors on the investment performance of household investors in the Northern Province of Sri Lanka. The respondents of the study were 1810 household investors in the Northern Province of Sri Lanka, who were selected under proportionate stratified random sampling technique. The collected data were analyzed with the support of analytical tools of independent t - test and one way ANOVA test. The results of the study reveal that gender, age, educational qualification, occupation and income of investors influence the investment performance whereas marital status of investors has no influence on investment performance. Based on the findings it is recommended to conduct investment training and awareness programme and to design new financial products and services which are particularly appropriate to specific segment of investors.

Keywords: investment, investment performance, demographic factors, return

1. Introduction

People tend to save a part of their current income for the purpose of financing their future consumption. Thus saving arises by sacrificing the current consumption. The money saved by the people are invested in various investment options up to their future consumption. Investment may be expressed as the commitment of resources or funds made in the expectation of realizing benefits that are expected to occur over a reasonably long future period of time (Kevin, 2006). Therefore the major feature of investment is expecting a reward or return. Fundamentally, investors should obtain a return from investments which is at least sufficient to protect the negative outcome of inflation. In other words, investors should obtain a minimum return which is adequate to protect the real value of their saved money. Otherwise it will be impossible to investors to achieve the objective of financing their future consumption. Thus investors need to provided more attention on performance of their investments. Investment performance indicates the outcomes of an investment programme (Feibel, 2003). Investment performance is assessed in terms of return earned by investments and the satisfaction derived by the investors from the investment.

2. Research Problem

Investment performance depends on various factors. Those can be broadly categorized in to economic factors, political factors, social factors and personal factors. Personal factors indicate the demographic features of investors. Talpsepp (2013) indicated that performance of investments of female investors is higher than the performance of male investors and older investors outperform younger investors in both female and male groups. Ozerol, Camgoz, Karan & Ergeneli (2011) mentioned that there is a strong positive correlation between age, education and marital status of investors and their investment performance and authors found that female investors and single investors perform better as compared to men and married investors respectively. Barber and Odean (2001) stated that male investors trade 45% more than female investors and this excessive trading of male investors results in poor return. Thus, this study attempts to identify the influence of demographic factors on investment performance of individual household investors in the Northern Province of Sri Lanka.

3. Objective of the Study

The objective of the study is to identify the influence of demographic factors on the investment performance of household investors in the Northern Province of Sri Lanka.

4. Review of Literature

Barber and Odean (2001) found that single men trade 67 % more than single women and earn annual risk-adjusted net returns which are 2.3 % lower than those earned by single women. Similarly, married women earned a stock market annual risk-adjusted net return 1.4 % more than married men.

Ozerol, Camgoz, Karan & Ergeneli (2011) concluded that female investors as compared to male investors and single investors as compared to married investors perform better in stock investments.

Talpsepp (2013) found that female investors perform better than the male investors and older investors exhibit better performance than younger investors in both female and male investor groups.

Lewellen, Lease & Schlarbaum (1979) conducted a study on, Investment Performance and Investor Behaviour, and concluded that level of education and income of the investors were negatively associated with performance.

Bliss & Potter (2002) examined the influence of gender on risk taking behaviour and performance and concluded that female investors tolerate more risk and earn higher raw returns than males.

Shu, Chiu, Chen & Yeh (2004) have made an attempt to identify the relationship between trading and investment performance and found that although males trade more excessively than females investment performance of males are not significantly lower than women's.

Feng & Seasholes (2008) investigated the investment decisions of over 50 000 individual investors in China and concluded that gender has no effect on the portfolio performances of individual investors.

5. Hypothesis of the Study

The study considers the following hypotheses.

H1: There is a significant difference in the investment performance of individual household investors in the Northern Province of Sri Lanka based on their gender.

H2:There is a significant difference in the investment performance of individual household investors in the Northern Province of Sri Lanka based on their marital status.

H3: There is a significant difference in the investment performance of individual household investors in the Northern Province of Sri Lanka based on their age.

H4: There is a significant difference in the investment performance of individual household investors in the Northern Province of Sri Lanka based on their educational qualification.

H5: There is a significant difference in the investment performance of individual household investors in the Northern Province of Sri Lanka based on their occupation.

H6: There is a significant difference in the investment performance of individual household investors in the Northern Province of Sri Lanka based on their income.

6. Data Collection

This study is a primary data based study and the relevant data was collected by using a structured questionnaire from 1810 individual household investors in the Northern Province of Sri Lanka under Proportionate stratified random sampling method. The Northern Province of Sri Lanka includes five administrative districts namely, Jaffna, Kilinochchi, Mullaitivu, Mannar and Vavuniya. Selection of sample respondents under proportionate stratified random sampling method involves a process of stratification followed by random selection of

v income of the household

samples from each stratum. Population is stratified in terms monthly income of the household investors. Table 1 shows the profiles of the respondents.

Table 1. Profile of respondents

Den	nographic Factors	Number of Respondents	Percentage
Gender	Male	1192	65.9
	Female	618	34.1
Age	<30	212	11.7
	31-40	419	23.1
	41-50	557	30.8
	51-60	451	24.9
	>60	171	9.4
Marital Status	Single	1513	83.6
	Married	297	16.4
Educational Qualification	Below G.C.E.O/L	137	7.6
	G.C.E.O/L	266	14.7
	G.C.E. A/L	829	45.8
	Diploma	194	10.7
	Graduate	300	16.6
	Post Graduate	84	4.6
Monthly Income	<25000	242	13.4
	25000-35000	542	29.9
	35001-45000	551	30.4
	45001-55000	297	16.4
	>55000	178	9.8
Occupation	Self Employed	591	32.7
	Private Sector Employee	487	26.9
	State Sector Employee	638	35.2
	Retired	94	5.2

7. Results and Analysis

The influence of demographic factors on the investment performance of individual household investors in the Northern Province of Sri Lanka was examined with the support of analytical tools of independent t - test and one way ANOVA test. The independent t - test was used to determine whether there is a statistically significant difference between the means in two unrelated groups. Whereas the one way ANOVA was used to compare means between three or more groups.

7.1 Gender and Investment Performance

In order to compare the investment performance of male and female household investors, an independent-samples t-test was conducted.

Table 2. Group Statistics: Gender and Investment Performance

Gender	N	Mean	Std. Deviation	Std. Error Mean	Skewness	Std. Error	Kurtosis	Std. Error
Male	1192	3.4525	0.68028	0.019	-0.369	0.071	-0.355	0.142
Female	618	3.3825	0.66141	0.026	-0.433	0.098	-0.217	0.196

The group statistics for Gender and Investment Performance is shown in Table 2 and it indicates that male investors showed higher investment performance (M = 3.4525, SD = 0.6803) than the females (M = 3.3825, SD = 0.6614).

Table 3. Independent samples t-test: Gender and Investment Performance

	Levene'	s Test			t-te	st for Equality o	f Means				
	for Equa	ality of									
	Varia	nces									
	F	Sig.	t	df	Sig.	Mean	Std. Error	95% Co	nfidence		
					(2-tailed)	Difference	Difference	Interva	l of the		
									rence		
							- -	Lower	Upper		
Equal variances	.948	.330	2.096	1808	.036	.07001	.033	.00450	.13553		
assumed											
Equal											
variances			2.115	1279.	.035	.07001	.033	.00506	.13496		
not			2.113	931	.033	.07001	.033	.00300	.1 <i>9</i> 1 70		
assumed											

Table 3 exhibits the results of the Independent samples t-test for Gender and Investment Performance. The p value of the F statistic of Levene's Test for Equality of Variances is greater than 0.05 and thus it can be concluded that the assumption of homogeneity of variance is met. The relevant t value is 2.096 and p<0.05. These statistics it indicates that there is significant difference in the investment performance of male and female investors and particularly, male investors experience higher investment performance than female investors. Thus it can be concluded that there is a significant difference in the investment performance of individual household investors in the Northern Province of Sri Lanka based on their gender.

7.2 Marital Status and Investment Performance

For the purpose of identifying the influence of marital status on investment performance an independent-samples t-test was conducted and the Group statistics for Marital Status and Investment Performance are exhibited in Table 4. According to the Table 4 investment performance mean values of married and single investors are 3.4270 (S.D= 0.6819) and 3.4369 (S.D= 0.6366) respectively.

Table 4. Group Statistics: Marital Status and Investment Performance

Marital Status	N	Mean	Std. Deviation	Std. Error	Skewness	Std. Error	Kurtosis	Std. Error
				Mean				
Married	1513	3.4270	.68191	.018	-0.396	0.063	-0.331	0.126
Single	297	3.4369	.63664	.037	-0.301	0.141	-0.195	0.282

According to the results of the Independent samples t-test for Martial Status and Investment Performance which are exhibited in Table 5 the p value of the F statistic of Levene's Test for Equality of Variances is greater than 0.05 and it implies that the assumption of homogeneity of variance is met. Therefore the relevant t value of the test is -0.231with a p value of 0.817 and since p value is greater than 0.05, it can be concluded that there is no significant difference in the investment performance of married and single investors.

Table 5. Independent samples t-test: Marital Status and Investment Performance

Leven	e's Test			t-test for Equality of Means			
for Equ	for Equality of						
Var	Variances						
F	Sig.	t	df	Sig.	Mean	Std.	95% Confidence
				(2-ta	Differe	Error	Interval of the
				iled)	nce	Differ	Difference

18SN 2162-3082 2017, Vol. 7, No. 1

							ence	Lower	Upper
Equal variances assumed	2.404	.121	231	1808	.817	00990	.043	0938 9	.0740 8
Equal variances not assumed			242	439.9 67	.809	00990	.041	0902 7	.0704 6

7.3 Age and Investment Performance

Influence of age on Investment performance of investors was examined by using one way ANOVA test. The five age groups of household investors considered in the study were 30 years or below, 31 - 40 years, 41 - 50 years, 51 - 60 years and over 60 years. The group statistics for age wise investment performance are shown in Table 6 and it reveals that Investors in the age group of 31 - 40 years exhibit the highest investment performance with the mean value of 3.4851 (S.D=0.6500), whereas, investors in the age group of over 60 years exhibit the lowest investment performance with the mean value of 3.2325 (S.D=0.7798).

Table 6. Group Statistics of Age wise Investment Performance

Age	N	Mean	Std. Deviation	Std. Error	Skewness	Std. Error	Kurtosis	Std. Error
				Mean				
30								
Years or	212	3.4847	.67511	.04637	-0.238	0.167	-0.392	0.333
Below								
31 - 40	419	3.4851	.65004	.03176	-0.450	0.119	0.194	0.238
Years	419	3.4631	.03004	.03170				
41 - 50	557	2.4250	64690	00741	-0.428	0.104	-0.273	0.207
Years	557	3.4259	.64689	.02741				
51 - 60	451	2 1271	67602	.03183	-0.442	0.115	-0.376	0.229
Years	451	3.4274	.67602	.03183				
Over 60	171	2 2225	77004	05064	-0.030	0.186	-0.901	0.369
Years	171	3.2325	.77984	.05964				

The results of one way ANOVA test between the different age groups of respondents and investment performance are shown in Table 7 and according to the results F statistic is 4.757 and p<0.05. A significant F value implies the significant differences in the investment performance based on age.

Table 7. ANOVA: Age and Investment Performance

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	8.587	4	2.147	4.757	.001
Within Groups	814.496	1805	.451		
Total	823.083	1809			

In this point the fulfillments of the assumptions of the one way ANOVA test was examined. The result of the test of homogeneity of variances is exhibited in Table 8 and it provided a significant (p<0.05) Levene Statistic. It indicates the violation of the assumption of Homogeneity of Variances.

Table 8. Test of Homogeneity of Variances: Age and Investment Performance

Levene Statistic	df1	df2	Sig.
5.878	4	1805	.000

The violation of the assumption of homogeneity of variance pointed out that an alternative ANOVA had to be conducted and warranted the use of adjusted F test of Welch statistic and Brown-Forsythe statistic. Table 9 shows the results of robust tests of equality of means and significant Welch statistic and Brown-Forsythe statistic were found (p<0.05).

Table 9. Robust Tests of Equality of Means: Age and Investment Performance

	Statistic ^a	dfl	df2	Sig.					
Welch	3.822	4	652.565	.004					
Brown-Forsythe	4.494	4	1135.067	.001					
a. Asymptotically F distributed.									

Since the Welch and Brown-Forsythe statistics are significant, in order to compare the investment performance groups the Games-Howell post hoc test was conducted and the results of the test are shown in Table 10.

Table 10. Games-Howell post hoc test of Multiple Comparisons: Age and Investment Performance

Depende	(I) Age	Investment Perfo	Mean Differenc	Std. Error	Sig.	95% Cor Inter	
			e (I-J)		-	Lower Bound	Upper Bound
		31 - 40 Years	00041	.05620	1.000	1544	.1536
	30 Years	41 - 50 Years	.05873	.05386	.812	0889	.2064
	or Below	51 - 60 Years	.05729	.05624	.847	0968	.2114
		Over 60 Years	.25221*	.07554	.008	.0450	.4594
	21 10	30 Years or Below	.00041	.05620	1.000	1536	.1544
	31 - 40 Vacara	41 - 50 Years	.05914	.04195	.621	0555	.1738
	Years	51 - 60 Years	.05770	.04496	.702	0652	.1806
		Over 60 Years	.25263*	.06756	.002	.0671	.4382
Games- Howell		30 Years or Below	05873	.05386	.812	2064	.0889
	41 - 50	31 - 40 Years	05914	.04195	.621	1738	.0555
	Years	51 - 60 Years	00144	.04201	1.000	1162	.1134
		Over 60 Years	.19349*	.06563	.029	.0131	.3739
	51 60	30 Years or Below	05729	.05624	.847	2114	.0968
	51 - 60 Years	31 - 40 Years	05770	.04496	.702	1806	.0652
	16418	41 - 50 Years	.00144	.04201	1.000	1134	.1162
		Over 60 Years	.19493*	.06760	.034	.0093	.3806
	0 (0	30 Years or Below	25221*	.07554	.008	4594	0450
	Over 60 Years	31 - 40 Years	25263 [*]	.06756	.002	4382	0671
	10018	41 - 50 Years	19349 [*]	.06563	.029	3739	0131
		51 - 60 Years	19493*	.06760	.034	3806	0093

The results of the Games-Howell post hoc test indicates that the investment performance of investors in the age group of Over 60 Years is significantly different from investors in the other age categories. The mean differences between the age group of Over 60 Years; and 30 Years or Below, 31 - 40 Years, 41 - 50 Years and 51 - 60 Years are -0.25221, -0.25263, -0.19349 and -0.19493 respectively. Therefore, there is a significant difference in the investment performance of household investors in the Northern Province of Sri Lanka based on their age.

7.4 Educational Qualification and Investment Performance

Based on their level of educational qualification, household investors were classified in to six groups namely, Below G.C.E O/L Qualification, G.C.E O/L Qualification, G.C.E A/L Qualification, Diploma Holders, Graduates and Post Graduates. Table 11 shows the group statistics for educational qualification wise investment performance and it indicates that graduates demonstrate the highest level of investment performances with a mean value of 3.5883 (S.D = 0.5953) and investors group with Below G.C.E O/L Qualification demonstrate the lowest level of investment performances with a mean value of 3.3002 (S.D = 0.7492).

Table 11. Group Statistics of Educational Qualification wise Investment Performance

Educational	N	Mean	Std.	Std.	Skewness	Std.	Kurtosis	Std.
Qualification			Deviation	Error		Error		Error
				Mean				
Below G.C.E	137	3.3002	.74915	.06400				
O/L	137	3.3002	.74913	.00400	-0.066	0.207	-0.907	0.411
G.C.E O/L	266	3.3139	.73517	.04508	-0.161	0.149	-0.842	0.298
G.C.E A/L	829	3.4059	.67990	.02361	-0.329	0.085	-0.222	0.170
Diploma	194	3,4903	.60317	.04331				
Holders	194	3.4903	.00517	.04331	-0.674	0.175	0.869	0.347
Graduates	300	3.5883	.59533	.03437	-0.564	0.141	0.020	0.281
Post	84	3.5119	.59542	.06497				
Graduates	84	3.3119	.39342	.00497	-0.609	0.263	-0.085	0.520

One way ANOVA test between the different educational qualification based groups of respondents and investment performance were conducted the results are shown in Table 12. According to the results the F statistic is 6.771 and p<0.05 and the significant F value indicates the significant differences in the investment performance of investors based on their educational qualification.

Table 12. ANOVA: Educational Qualification and Investment Performance

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	15.162	5	3.032	6.771	.000
Within Groups	807.921	1804	.448		
Total	823.083	1809			

An investigation on the fulfillments of the assumptions of the test reveals that the assumption of Homogeneity of Variances was violated since the results of the test of homogeneity of variances reveals a significant Levene Statistic which is shown in Table 13.

Table 13. Test of Homogeneity of Variances: Educational Qualification and Investment Performance

Levene Statistic	dfl		df2	Sig.
8.195		5	1804	.000

The violation of the assumption of homogeneity of variance necessitated the use of adjusted F test of Welch statistic and Brown-Forsythe statistic. The results of robust tests of equality of means are shown in Table 14 and Welch statistic and Brown-Forsythe statistic are significant since p<0.05.

Table 14. Robust Tests of Equality of Means: Educational Qualification and Investment Performance

	Statistic ^a	dfl	df2	Sig.
Welch	7.126	5	438.668	.000
Brown-Forsythe	6.927	5	944.529	.000
a. Asymptotically	F distributed.			

As Welch and Brown-Forsythe statistics are significant, in order to compare educational qualification based groups the Games-Howell post hoc test was applied and Table 15 shows the results of the Games-Howell post hoc test.

Table 15. Games-Howell post hoc test of Multiple Comparisons: Educational Qualification and Investment Performance

Dependent	Variable: Investment	Performance				
(I)	(J)	Mean	Std. Error	Sig.	95% Con	
Edu_Quali	Edu_Qualification	Difference		_	Interv	vai
fication		(I-J)			Lower	Upper
					Bound	Bound
Below	G.C.E O/L	01373	.07828	1.000	2384	.2110
G.C.E O/L	G.C.E A/L	10573	.06822	.633	3023	.0909
U.C.E O/L	Diploma	19015	.07728	.140	4121	.0318

					,	, , , , , , , , , , , , , , , , , , , ,
	Graduate	28815*	.07265	.001	4970	0793
	Post Graduate	21172	.09120	.190	4741	.0506
	Below G.C.E O/L	.01373	.07828	1.000	2110	.2384
	G.C.E A/L	09200	.05089	.462	2377	.0537
G.C.E O/L	Diploma	17643	.06251	.056	3553	.0025
	Graduate	27442*	.05669	.000	4366	1123
	Post Graduate	19799	.07907	.129	4259	.0299
	Below G.C.E O/L	.10573	.06822	.633	0909	.3023
	G.C.E O/L	.09200	.05089	.462	0537	.2377
G.C.E A/L	Diploma	08442	.04932	.525	2258	.0570
	Graduate	18242*	.04170	.000	3016	0632
	Post Graduate	10599	.06912	.644	3066	.0946
	Below G.C.E O/L	.19015	.07728	.140	0318	.4121
	G.C.E O/L	.17643	.06251	.056	0025	.3553
Diploma	G.C.E A/L	.08442	.04932	.525	0570	.2258
	Graduate	09800	.05529	.485	2563	.0603
	Post Graduate	02157	.07808	1.000	2468	.2037
	Below G.C.E O/L	.28815*	.07265	.001	.0793	.4970
	G.C.E O/L	$.27442^{*}$.05669	.000	.1123	.4366
Graduate	G.C.E A/L	.18242*	.04170	.000	.0632	.3016
	Diploma	.09800	.05529	.485	0603	.2563
	Post Graduate	.07643	.07350	.904	1361	.2890
	Below G.C.E O/L	.21172	.09120	.190	0506	.4741
Post	G.C.E O/L	.19799	.07907	.129	0299	.4259
Graduate	G.C.E A/L	.10599	.06912	.644	0946	.3066
Graduate	Diploma	.02157	.07808	1.000	2037	.2468
	Graduate	07643	.07350	.904	2890	.1361
*. The mea	n difference is signific	ant at the 0.05	level.			

The results of the Games-Howell post hoc test of multiple comparisons indicates that the investment performances of Graduates group were significantly different from the investor groups with the educational qualification of Below G.C.E O/L, G.C.E O/L and G.C.E A/L. The mean differences between the Graduates group and the groups of Below G.C.E O/L, G.C.E O/L and G.C.E A/L are 0.28815, 0.27442 and 0.18242 respectively and these mean difference are significant at the 0.05 level. Thus it can be concluded that there is a significant difference in the investment performance of individual household investors in the Northern Province of Sri Lanka based on their educational qualification.

7.5 Occupation and Investment Performance

The respondents of the study are classified in to four groups based on their occupation and the groups are Self Employed, Private Sector Employees, State Sector Employees and Retired. A comparison of investment performances of the household investors based on occupation were carried out by using one way ANOVA test and the group statistics for occupation wise investment performance is shown in Table 16.

State sector employees exhibits the highest level of investment performance with a mean value of 3.4855(S.D = 0.6114) whereas the lowest level of investment performance was found in the case of retired household investors with a mean value of 3.1702 (S.D = 0.7751).

Table 16. Group Statistics of Occupation Wise Investment Performance

Occupation	N	Mean	Std.	Std.	Skewness	Std.	Kurtosis	Std.
			Deviati	Error		Error		Error
			on	Mean				
Self	591	3.3860	.72595	.02986	-0.283	0.101	-0.741	0.201
Employed	391	3.3600	.12393	.02980				
Private					-0.445	0.111	-0.066	0.221
Sector	487	3.4556	.65488	.02968				
Employees								
State Sector	638	3.4855	.61136	.02420	-0.445	0.097	0.029	0.193
Employees	038	3.4833	.01130	.02420				
Retired	94	3.1702	.77508	.07994	0.064	0.249	-0.732	0.493

The results of one way ANOVA test between the different groups of respondents based on occupation and investment performance is shown in Table 17 and it reveals a significant F statistic of 7.231(p<0.05). The significant F value implies the significant differences in the investment performance of household investors based on their occupation.

Table 17. ANOVA: Occupation and Investment Performance

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	9.769	3	3.256	7.231	.000
Within Groups	813.314	1806	.450		
Total	823.083	1809			

The fulfillment of the assumptions of the test was examined and found that the assumption of Homogeneity of Variances was violated since the result of the test of homogeneity of variances indicated a significant (p<0.05) Levene Statistic, which is exhibited in Table 18.

Table 18. Test of Homogeneity of Variances: Occupation and Investment Performance

Levene Statistic	dfl	df2	Sig.
13.779	3	1806	.000

In this stage since the assumption of homogeneity of variances was violated, it is necessary to use the adjusted F test of Welch statistic and Brown-Forsythe statistic and Table 19 shows the results of robust tests of equality of means, which reveals significant (p<0.05) Welch and Brown-Forsythe statistics.

Table 19. Robust Tests of Equality of Means: Occupation and Investment Performance

	Statistic ^a	df1		df2	Sig.
Welch	6.132		3	401.034	.000
Brown-Forsythe	6.601		3	548.158	.000
a. Asymptotically	F distributed	l.			

Based on the results of robust tests of equality of means, in order to compare groups the Games-Howell post hoc test was conducted and the results of the test are shown in Table 20.

Table 20. Games-Howell post hoc test of Multiple Comparisons: Occupation and Investment Performance

Dependent	Dependent Variable: Investment Performance								
(I)	(J) Occupation	Mean	Std. Error	Sig.	95% Confidence				
Occupation		Difference		_	Inter	val			
		(I-J)			Lower	Upper			
					Bound	Bound			
C 1C	Private Sector Employees	06960	.04210	.349	1779	.0387			
Self Employed	State Sector Employees	09950 [*]	.03844	.048	1984	0006			
ширюуса	Retired	.21579	.08534	.061	0065	.4381			
Private	Self Employed	.06960	.04210	.349	0387	.1779			
Sector	State Sector Employees	02991	.03829	.863	1285	.0686			
Employees	Retired	.28538*	.08527	.006	.0632	.5076			

State	Self Employed	.09950*	.03844	.048	.0006	.1984
Sector	Private Sector Employees	.02991	.03829	.863	0686	.1285
Employees	Retired	.31529*	.08353	.001	.0974	.5332
	Self Employed	21579	.08534	.061	4381	.0065
Retired	Private Sector Employees	28538*	.08527	.006	5076	0632
	State Sector Employees	31529 [*]	.08353	.001	5332	0974
*. The mean difference is significant at the 0.05 level.						

According to the results of the Games-Howell post hoc test of multiple comparisons for significance, the investment performance of Retired group of investors were significantly different from the groups of Private Sector Employees and State Sector Employees with the mean differences of -0.28538 and -0.31529 respectively. In addition, investment performance of Self Employed group were also significantly different from the State Sector Employees with the mean differences of -0.09950. Thus, occupation of investors influences investment performance.

7.6 Income and Investment Performance

The investment performances of the household investors with different level of income were compared with the support of One way ANOVA test. On the basis of their monthly income household investors were classified in to five groups. Table 21shows the group statistics of income wise investment performances of the household investors. Investors group with a monthly income of more than 55000/= show the highest level of investment performances with a mean value of 3.6903 (S.D = 0.6791) and investors group with a monthly income of Less than 25000/= show the lowest level of investment performances with a mean value of 3.1162 (S.D = 0.6912).

Table 21. Group Statistics of Income Wise Investment Performance

Mean	Std.	Std.	Skewness	Std.	Kurtosis	Std.
	Deviation	Error		Error		Error
		Mean				
2 1162	60124	04442	0.173	0.156	-0.874	0.312
3.1162	.69124	.04443				
2 2020	67924	02012	-0.216	0.105	-0.249	0.209
3.3030	.07624	.02913				
2.4722	(1((0)	02627	-0.505	0.104	0.552	0.208
3.4/32	.61660	.02627				
2 5252	65617	02900	-0.830	0.141	0.048	0.282
3.3233	.03047	.03809				
2 6002	<i>6</i> 7011	05000	-0.732	0.182	-0.173	0.362
3.0903	.0/911	.03090				
	3.1162 3.3838 3.4732 3.5253 3.6903	Deviation 3.1162 .69124 3.3838 .67824 3.4732 .61660 3.5253 .65647	Deviation Error Mean 3.1162 .69124 .04443 3.3838 .67824 .02913 3.4732 .61660 .02627 3.5253 .65647 .03809	Deviation Error Mean 3.1162 .69124 .04443 0.173 3.3838 .67824 .02913 -0.216 3.4732 .61660 .02627 -0.505 3.5253 .65647 .03809 -0.830	Deviation Error Mean Error 3.1162 .69124 .04443 0.173 0.156 3.3838 .67824 .02913 -0.216 0.105 3.4732 .61660 .02627 -0.505 0.104 3.5253 .65647 .03809 -0.830 0.141	Deviation Error Error 3.1162 .69124 .04443 0.173 0.156 -0.874 3.3838 .67824 .02913 -0.216 0.105 -0.249 3.4732 .61660 .02627 -0.505 0.104 0.552 3.5253 .65647 .03809 -0.830 0.141 0.048

Table 22 exhibits the results of one way ANOVA test between the different income based groups of household investors and investment performance. According to the results, F statistic is 23.515 and p<0.05 and a significant F value implies the significant differences in the investment performance of household investors based on their income.

Table 22. ANOVA: Income and Investment Performance

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	40.768	4	10.192	23.515	.000
Within Groups	782.315	1805	.433		_
Total	823.083	1809			

An examination on the fulfillment of the assumptions of the test indicates that the assumption of Homogeneity of Variances was violated. The results of the test of homogeneity of variances are shown in Table 23 and it reveals that the Levene Statistic is significant since the p value is less than 0.05.

Table 23. Test of Homogeneity of Variances: Income and Investment Performance

Test of Homogeneity of Variances						
Investment Performa	nce					
Levene Statistic	df1		df2	Sig.		
5.517		4	1805		.000	

The violation of the assumption of homogeneity of variance necessitated the use of adjusted F test of Welch statistic and Brown-Forsythe statistic. The results of robust tests of equality of means are shown in Table 24 and Welch and Brown-Forsythe statistics are significant since p<0.05.

Table 24. Robust Tests of Equality of Means: Income and Investment Performance

	Statistic ^a	df1	df2	Sig.	
Welch	21.796	4	668.073	.000	
Brown-Forsythe	22.946	4	1290.864	.000	
a. Asymptotically F distributed.					

Since the Welch and Brown-Forsythe statistics are significant, the Games-Howell post hoc test was conducted in order to compare groups. Table 25 shows the results of the Games-Howell post hoc test.

Table 25. Games-Howell post hoc test of Multiple Comparisons: Income and Investment Performance

Dependent Variable: Investment Performance						
(I) Monthly	(J) Monthly Income	Mean	Std.	Sig.	95% Confidence Interval	
Income		Difference	Error			
		(I-J)			Lower	Upper
					Bound	Bound
	25000/= to 35000/=	26754*	.05313	.000	4131	1220
Less than	35000/= to 45000/=	35701*	.05162	.000	4984	2156
25000/=	45000/= to 55000/=	40903 [*]	.05853	.000	5693	2488
	More than 55000/=	57409 [*]	.06757	.000	7593	3889
25000/= to 35000/=	Less than 25000/=	.26754*	.05313	.000	.1220	.4131
	35000/= to 45000/=	08947	.03923	.152	1966	.0177
	45000/= to 55000/=	14149 [*]	.04796	.027	2727	0103
	More than 55000/=	30655*	.05865	.000	4675	1456
	Less than 25000/=	.35701*	.05162	.000	.2156	.4984
35000/= to	25000/= to 35000/=	.08947	.03923	.152	0177	.1966
45000/=	45000/= to 55000/=	05202	.04627	.794	1786	.0746
	More than 55000/=	21708*	.05728	.002	3744	0598
	Less than 25000/=	.40903*	.05853	.000	.2488	.5693
45000/= to 55000/=	25000/= to 35000/=	$.14149^{*}$.04796	.027	.0103	.2727
	35000/= to 45000/=	.05202	.04627	.794	0746	.1786
	More than 55000/=	16506	.06358	.073	3394	.0092
More than 55000/=	Less than 25000/=	.57409*	.06757	.000	.3889	.7593
	25000/= to 35000/=	.30655*	.05865	.000	.1456	.4675
	35000/= to 45000/=	.21708*	.05728	.002	.0598	.3744
	45000/= to 55000/=	.16506	.06358	.073	0092	.3394
*. The mean difference is significant at the 0.05 level.						

The Games-Howell post hoc test of multiple comparisons for significance indicates that the investment performances of household investors with the monthly income of Less than 25000/= were significantly different from investors in the entire other income groups. Likewise the investment performances of investors with the monthly income of 25000/= to 35000/= were also significantly different from investors in the entire other income groups except the income group of 35000/= to 45000/=. Further, the investment performances of

investors with the monthly income of More than 55000/= were also significantly different from investors in the entire other income groups except the income group of 45000/= to 55000/=. Therefore it can be concluded that there is a significant difference in the investment performance of individual household investors in the Northern Province of Sri Lanka based on their income.

8. Hypothesis Testing

Hypothesis	Decision
H1: There is a significant difference in the investment performance of	Accepted
individual household investors in the Northern Province of Sri Lanka	
based on their gender.	
H2:There is a significant difference in the investment performance of	Rejected
individual household investors in the Northern Province of Sri Lanka	
based on their marital status.	
H3: There is a significant difference in the investment performance of	Accepted
individual household investors in the Northern Province of Sri Lanka	
based on their age.	
H4: There is a significant difference in the investment performance of	Accepted
individual household investors in the Northern Province of Sri Lanka	
based on their educational qualification.	
H5: There is a significant difference in the investment performance of	Accepted
individual household investors in the Northern Province of Sri Lanka	
based on their occupation.	
H6: There is a significant difference in the investment performance of	Accepted
individual household investors in the Northern Province of Sri Lanka	
based on their income.	

9. Discussion on Findings

According to the results of the independent t test between gender and investment performance, it was found that there is a significant difference in the investment performance of male and female household investors. Male investors exhibit better performance than female investors. Generally male investors tend to take more risk than females and it resulted in higher return. In addition, female investors in the study region highly rely on traditional and low yield investment options such as bank deposits and fail to participate in securities markets. These may be the reasons behind the lower performance of female investors.

The results of the one way ANOVA test between age and investment performance indicate that age has an influence on investment performance of household investors. Younger investors tend to take more risk than elders. This difference in risk taking behaviour is the reason for differences in investment performance based on age. Particularly, investor in the

age group of more than 60 years tend to take very lower level of risk because most of them have fulfilled their life based financial obligations such as education and marriage of their sons and daughters and in this stage they provide more emphasis for safety of their money rather than earning higher return.

It was also found that there is a significant difference in the investment performance of household investors based on their educational qualification. An increase in the level of education of investors results in increased knowledge and awareness in the area investment. It helps them to achieve higher performance.

According to the results of the study, occupation influences the investment performance of household investors. Since retired investor group don't engage in serious investment activities, their investment performance is at lower level. In addition, higher level of job security for the state Sector Employees supports them to take more risk in investment activities in order to earn more return.

It was also observed that there is a significant difference in the investment performance of household investors based on their income. Increased income supports investors to increase their risk taking ability and to improve their performance.

10. Recommendations

It is recommended that in order to improve the knowledge and awareness of female investors and investors with lower level of education proper training and awareness programmes in the field of investment should be conducted. In addition, financial services industry of the Northern Province of Sri Lanka should be restructured. Finally, financial institutions should design new financial products and services which are particularly appropriate to female and elder investors.

11. Conclusion

This study has made an attempt to identify the influence of demographic factors on the investment performance of household investors in the Northern Province of Sri Lanka and found that gender, age, educational qualification, occupation and income of investors influence the investment performance whereas marital status of investors has no influence on investment performance. Future studies in this area may consider the influence of the other demographic factors such as ethnicity and religion on investment performance.

References

Barber, B. M., & Odean, T. (2001). Boys will be boys: Gender, overconfidence, and common stock investment. *Quarterly journal of Economics*, 261-292. https://doi.org/10.1162/003355301556400

Bliss, R. T., & Potter, M. E. (2002). Mutual fund managers: Does gender matter?. *The Journal of Business and Economic Studies*, 8(1), 1.

Feibel, B. J. (2003) *Investment Performance Measurement*. John Wiley & Sons, Inc., Hoboken, New Jersey.

2017, Vol. 7, No. 1 gender similarities in an

Feng, L., & Seasholes, M. S. (2008). Individual investors and gender similarities in an emerging stock market. *Pacific-Basin Finance Journal*, *16*(1), 44-60. https://doi.org/10.1016/j.pacfin.2007.04.003

Fischer, D. E., & Jordan, R. J. (2002). *Security Analysis and Portfolio Management*. Printice-Hall of India Pvt Limited, New Delhi.

Francis, J. Clark. (1991). *Investments Analysis and Management* (5th ed.). Mc Graw-Hill Inc., USA.

Kevin, S. (2006), *Portfolio Management* (Second ed.). Prentice Hall of India Private Limited, New Delhi, 15.

Lewellen, W. G., Lease, R. C., & Schlarbaum, G. G. (1979). Investment performance and investor behavior. *Journal of Financial and Quantitative Analysis*, 14(01), 29-57. https://doi.org/10.2307/2330654

Ozerol, H., Camgoz, S. M., Karan, M. B., & Ergeneli, A. (2011). Determining the performance of individual investors: the predictive roles of demographic variables and trading strategies. *International Journal of Business and Social Science*, 2(18), 86-92.

Pandey, I. M. (2008), Financial Management (9th ed.). Vikas Publishing House. India.

Prasanna, C. (2009). *Investment Analysis and Portfolio Management* (3rd ed.). Tata Mcgraw Hill Education Pvt, New Delhi.

Shu, P. G., Chiu, S. B., Chen, H. C., & Yeh, Y. H. (2004). Does trading improve individual investor performance?. *Review of Quantitative Finance and Accounting*, 22(3), 199-217. https://doi.org/10.1023/B:REQU.0000025760.91840.8d

Talpsepp, T. (2013). Does Gender and Age Affect Investor Performance and the Disposition Effect?. Research in Economics and Business: Central and Eastern Europe, 2(1), 76-93.

Copyright Disclaimer

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/)