Tissue-Specific Differential Expression of Two β-carbonic Anhydrases in Leucaena leucocephala Under Abiotic Stress Conditions

Archana Pal, Dulal Borthakur

Abstract


Besides carbon fixation in plants, β-carbonic anhydrases (β-CAs) have been shown to be involved in plant adaptation against some abiotic stress conditions. The objective of this research was to determine the expression levels of two isoforms of β-CAs under various stress conditions in different tissues of Leucaena leucocephala, a highly stress-tolerant tree-legume of tropics. The cDNAs for two β-CAs isoforms, one chloroplastic (cacp) and other cytoplasmic (cacyt) were isolated. These isoforms have 79% similarities at amino acid level, and their secondary structures, active site residues including zinc ligands, and the three-dimensional (3D) quaternary structures were found to be highly conserved and similar to those of the β-CA from Pisum sativum, which is structurally well-characterized. The 3D-model of the two leucaena β-CAs predicted them as octameric proteins like the β-CA from P. sativum. The transcripts for cacp was found to be more abundant than the transcripts for cacyt in leaf and stem tissues, however the transcripts level of both β-CAs were similar in root tissues. The drought, salt, and light conditions caused up-regulation, and dark resulted down regulation of the cacp and cacyt transcripts. However, the changes in the expression levels of cacp was more pronounced than those of cacyt, except in salt-stressed root tissues, which showed more pronounced up regulation of cacyt than that of cacp. This study suggests that abiotic stress conditions affecting the photosynthesis potential of plants also affect expression of different isoforms of β-CAs from C3 plants differentially, which may contribute to plants’ survival under stress conditions.


Full Text:

PDF PDF

References


Andersen, C. L., Jensen, J. L., & Ørntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64(15), 5245-5250.

Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22(2), 195-201.

Badger, M. R., & Price, G. D. (1994). The role of carbonic anhydrase in photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 45(1), 369-392. doi: doi:10.1146/annurev.pp.45.060194.002101

Bracey, M. H., Christiansen, J., Tovar, P., Cramer, S. P., & Bartlett, S. G. (1994). Spinach carbonic anhydrase: investigation of the zinc-binding ligands by site-directed mutagenesis, elemental analysis, and EXAFS. Biochemistry, 33(44), 13126-13131.

Burnell, J. N. (2000). Carbonic anhydrases of higher plants: an overview. In W. R. Chegwidden, N. D. Carter & Y. H. Edwards (Eds.), The Carbonic Anhydrases: New Horizons (Vol. 90, pp. 501-517): Birkhäuser.

Burnell, J. N., Gibbs, M. J., & Mason, J. G. (1990). Spinach chloroplastic carbonic anhydrase nucleotide sequence analysis of cDNA. Plant Physiology, 92(1), 37-40.

Chory, J., Peto, C., Feinbaum, R., Pratt, L., & Ausubel, F. (1989). Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell, 58(5), 991-999.

Cowan, I. R. (1986). Economics of carbon fixation in higher plants. Paper presented at the On the economy of plant form and function, Cambridge.

Emanuelsson, O., Nielsen, H., Brunak, S., & von Heijne, G. (2000). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology, 300(4), 1005-1016.

Fabre, N., Reiter, I. M., Becuwe-Linka, N., Genty, B., & Rumeau, D. (2007). Characterization and expression analysis of genes encoding α and β carbonic anhydrases in Arabidopsis. Plant, Cell & Environment, 30(5), 617-629.

Fawcett, T., Volokita, M., & Bartlett, S. (1990). Spinach carbonic anhydrase primary structure deduced from the sequence of a cDNA clone. Journal of Biological Chemistry, 265(10), 5414-5417.

Fett, J. P., & Coleman, J. R. (1994). Characterization and expression of two cDNAs encoding carbonic anhydrase in Arabidopsis thaliana. Plant Physiology, 105(2), 707-713.

Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6(3), 269-279.

Giuliano, G., Pichersky, E., Malik, V., Timko, M., Scolnik, P., & Cashmore, A. (1988). An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proceedings of the National Academy of Sciences, 85(19), 7089-7093.

Götz, R., Gnann, A., & Zimmermann, F. K. (1999). Deletion of the carbonic anhydrase-like gene NCE103 of the yeast Saccharomyces cerevisiae causes an oxygen-sensitive growth defect. Yeast, 15(10A), 855-864.

Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714-2723.

Hatch, M. D., & Burnell, J. N. (1990). Carbonic anhydrase activity in leaves and its role in the first step of C4 photosynthesis. Plant Physiology, 93(2), 825-828.

Hewett-Emmett, D. (2000). Evolution and distribution of the carbonic anhydrase gene families. In W. R. Chegwidden, N. D. Carter & Y. H. Edwards (Eds.), The Carbonic Anhydrases: New Horizons (Vol. 90, pp. 29-78): Birkhäuser.

Hewett-Emmett, D., & Tashian, R. E. (1996). Functional Diversity, Conservation, and Convergence in the Evolution of the α-, β-, and γ-Carbonic Anhydrase Gene Families. Molecular Phylogenetics and Evolution, 5(1), 50-77.

Kamal, A. H. M., Cho, K., Kim, D.-E., Uozumi, N., Chung, K.-Y., Lee, S. Y., . . . Woo, S. H. (2012). Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Molecular Biology Reports, 39(9), 9059-9074.

Kaul, T., Reddy, P. S., Mahanty, S., Thirulogachandar, V., Reddy, R. A., Kumar, B., . . . Reddy, M. K. (2011). Biochemical and molecular characterization of stress-induced β-carbonic anhydrase from a C4 plant, Pennisetum glaucum. Journal of Plant Physiology, 168(6), 601-610.

Kimber, M. S., & Pai, E. F. (2000). The active site architecture of Pisum sativum β-carbonic anhydrase is a mirror image of that of α-carbonic anhydrases. The EMBO Journal, 19(7), 1407-1418.

Lawlor, D. W. (1995). The effects of water deficit on photosynthesis. In N. Smirnoff (Ed.), Environment and plant metabolism: flexibility and acclimation (pp. 129-160): BIOS Scientific Publishers.

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408.

Ludwig, M. (2012). Carbonic anhydrase and the molecular evolution of C4 photosynthesis. Plant, Cell & Environment, 35(1), 22-37.

McGuffin, L. J., Bryson, K., & Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics, 16(4), 404-405.

Moroney, J. V., Ma, Y., Frey, W. D., Fusilier, K. A., Pham, T. T., Simms, T. A., . . . Mukherjee, B. (2011). The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynthesis Research, 109(1-3), 133-149.

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250.

Negi, V. S., Pal, A., Singh, R., & Borthakur, D. (2011). Identification of species-specific genes from Leucaena leucocephala using interspecies suppression subtractive hybridisation. Annals of Applied Biology, 159(3), 387-398.

Okabe, K., Yang, S. Y., Tsuzuki, M., & Miyachi, S. (1984). Carbonic anhydrase: its content in spinach leaves and its taxonomic diversity studied with anti-spinach leaf carbonic anhydrase antibody. Plant Science Letters, 33(2), 145-153.

Pal, A., Negi, V. S., & Borthakur, D. (2012). Efficient in vitro regeneration of Leucaena leucocephala using immature zygotic embryos as explants. Agroforestry Systems, 84(2), 131-140.

Rowlett, R. S. (2010). Structure and catalytic mechanism of the β-carbonic anhydrases. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1804(2), 362-373.

Rowlett, R. S., Chance, M. R., Wirt, M. D., Sidelinger, D. E., Royal, J. R., Woodroffe, M., . . . Lam, M. G. (1994). Kinetic and structural characterization of spinach carbonic anhydrase. Biochemistry, 33(47), 13967-13976.

Schlicker, C., Hall, R. A., Vullo, D., Middelhaufe, S., Gertz, M., Supuran, C. T., . . . Steegborn, C. (2009). Structure and inhibition of the CO2-sensing carbonic anhydrase Can2 from the pathogenic fungus Cryptococcus neoformans. Journal of Molecular Biology, 385(4), 1207-1220.

Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381-3385.

Sly, W. S., & Hu, P. Y. (1995). Human carbonic anhydrases and carbonic anhydrase deficiencies. Annual Review of Biochemistry, 64(1), 375-401.

Smith, K. S., Cosper, N. J., Stalhandske, C., Scott, R. A., & Ferry, J. G. (2000). Structural and kinetic characterization of an archaeal β-class carbonic anhydrase. Journal of Bacteriology, 182(23), 6605-6613.

Smith, K. S., Ingram-Smith, C., & Ferry, J. G. (2002). Roles of the conserved aspartate and arginine in the catalytic mechanism of an archaeal β-class carbonic anhydrase. Journal of Bacteriology, 184(15), 4240-4245.

Strop, P., Smith, K. S., Iverson, T. M., Ferry, J. G., & Rees, D. C. (2001). Crystal structure of the "cab"-type β class carbonic anhydrase from the archaeon Methanobacterium thermoautotrophicum. Journal of Biological Chemistry, 276(13), 10299-10305.

Sudhir, P., & Murthy, S. D. S. (2004). Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 42(4), 481-486.

Syrjänen, L., Tolvanen, M., Hilvo, M., Olatubosun, A., Innocenti, A., Scozzafava, A., . . . Supuran, C. T. (2010). Characterization of the first beta-class carbonic anhydrase from an arthropod (Drosophila melanogaster) and phylogenetic analysis of beta-class carbonic anhydrases in invertebrates. BMC Biochemistry, 11(1), 28.

Tachibana, M., Allen, A. E., Kikutani, S., Endo, Y., Bowler, C., & Matsuda, Y. (2011). Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynthesis Research, 109(1-3), 205-221.

Tetu, S. G., Tanz, S. K., Vella, N., Burnell, J. N., & Ludwig, M. (2007). The Flaveria bidentis β-carbonic anhydrase gene family encodes cytosolic and chloroplastic isoforms demonstrating distinct organ-specific expression patterns. Plant Physiology, 144(3), 1316-1327.

Zimmerman, S. A., & Ferry, J. G. (2008). The β and γ Classes of Carbonic Anhydrase. Current Pharmaceutical Design, 14(7), 716-721.




DOI: https://doi.org/10.5296/jab.v2i2.5797

Refbacks

  • There are currently no refbacks.


Copyright (c)



To make sure that you can receive messages from us, please add the 'macrothink.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

Copyright © Macrothink Institute   ISSN 2327-0640