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Abstract 

Labile pools of soil organic matter (SOM), including soil sugars, are important to the 

formation and stabilization of soil aggregates and to microbial activity and nutrient cycling. 

The effects of cropping systems at farm level in tropical areas on SOM labile pool dynamics 

have not been adequately studied and the results are sparse and inconsistent. The objective of 

this study was to determine the effects of soil management intensity on soil sugar monomers 

derived from plant debris or microbial activity in cotton (Gossypium herbaceum)-based 

cropping systems of western Burkina Faso. Thirty-three (33) plots were sampled at 0-15 cm 

soil depth considering field-fallow successions and tillage intensity. Two pentose (arabinose, 

xylose) and four hexose (glucose, galactose, mannose, glucosamine) monomers accounted for 

2 to 18% of soil organic carbon (SOC) content. Total sugar content was significantly less 

with tillage, especially for the hexose monomeric sugars glucose and mannose, the latter of 

microbial origin. Soil mannose was 63 and 80% less after 10 years of cultivation, without and 

with annual ploughing respectively, compared with fallow conditions. Soil monosaccharide 

content was rapidly restored with fallow and soon approached the equilibrium level observed 

under old fallow lands. Therefore, the soil monosaccharides, in particular galactose and 

mannose from microbial synthesis are early indicators of changes in SOC.  

Keywords: Cultivation intensity, cotton, fallow, Ferric Lixisol, monosaccharides, soil organic 

carbon.  

Soil organic matter (SOM) is critical to sustainable management of tropical savannah soil 

fertility (Sermé et al., 2016). It provides energy, substrates, plant nutrients, and the biological 

diversity required to sustain numerous soil ecosystems functions (Ouattara et al., 2006), but 

SOM contents vary among environments and management systems. Generally, SOM is more 

with higher annual precipitation, lower annual temperature, higher clay content, and native 

vegetation compared to cultivated management, and conservation compared with plough 

tillage system (Chan et al., 2002; Sharma et al., 2013). In the African savannahs, farmers 

practiced shifting cultivation with a few years of cultivation followed by a longer fallow 

period to sustain soil fertility (Ruthenberg, 1971; Dhadli et al., 2016). Fallow affected 

production and ecological functions leading to improved nutrient availability and biodiversity 

(De Wolf et al., 2000; Liu et al., 2013). Land use has intensified and fallow is less frequent 

and of shorter duration with reduced SOM and SOM-related soil processes. The SOM decline 

was exponential with a great loss following first cultivation of virgin soils, but the decline 

continues after many years (Arrouays et al., 1994; Srinivasarao et al., 2014). However, SOM 

has diverse components with some SOM pools protected by mineral clays (Larré-Larrouy et 

al., 2003). Coarse sand size SOM fractions, carbohydrates, and soil microbial biomass can be 

considered as indicators of early changes in SOM stocks related to cultivation intensity 

(Haynes, 1999; Schulz et al., 2014). Labile pools of SOM, including soil sugars, are 

http://www.sciencedirect.com/science/article/pii/S0016706103001356
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important to the formation and stabilization of soil aggregates (Oades, 1984; Gentile et al., 

2013; Pérès et al., 2013; Tian et al., 2015) and to microbial activity and nutrient cycling 

(Belay-Tedla et al., 2009).  

In tropical areas, the induced-effects of cropping systems on SOM labile pool dynamics have 

not been adequately studied and the results are sparse and inconsistent. The objective of this 

research was to determine the contents, composition of hydrolysable carbohydrates and their 

variation across a large range of cotton-based cropping systems. The study was carried out in 

on-farm fields, in the cotton area of western Burkina Faso. The hypothesis of the study was 

that the dynamics of monomer sugars, through the various cropping systems, is a good 

indicator of early soil organic matter changes.  

1. Materials and methods 

1.1 Site Description 

The study was carried out at Bondoukui (11°51’ N lat., 3°46’ W long., 360 m a.s.l), located in 

the western cotton zone in Burkina Faso. This region provided contrasted situations, in terms 

of diversity of major cropping systems (shifting, cyclic and continuous cultivation) and 

tillage intensity (occasional, biennial and annual ploughing). Mean rainfall is between 900 

and 1,000 mm yr
-1

 with a unimodal distribution with a high rainfall distribution from May to 

October. The daily maximum temperatures vary between 31 and 39°C. The average 

evapotranspiration is 1,900 mm yr
-1

. Vegetation type prior to cropping was an open woody 

savannah and the main species Vittelaria paradoxa and Parkia biglobosa constitute parklands 

in the cultivated areas. The soil type is Ferric Lixisol (Table 1).  

Table 1: Physical and chemical characteristics of Bondoukui soils under fallow (depth 0-15 

cm).). 

Soil characteristics Values (N = 14) 

Clay + fine silt (%) 26.6 + 11.5 

Total sands (%) 54.4 + 14.1 

Bulk density (kg/dm3) 1.48 + 0.08 

Total basic cations (cmol/kg soil 3.3 + 1.7 

CEC (cmol /l) 3.7 + 2.2 
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Organic carbon (g-C/kg-Soil) 6.0 + 1.6 

Nitrogen (g-N/kg-Soil) 0.4 + 0.1 

pH water 6.2 + 0.3 

CEC: Cation Exchange Capacity  N: Number of fallow plots 

1.2 Cropping Systems  

Study plots were identified, based on-farm field typology according to the intensity of 

cultivation (IC), as defined by Ruthenberg (1971). The IC is the ratio of years in annual crops 

to years in fallow. Thus, three major cropping systems were identified: 

i. Shifting cultivation system (IC < 0.33), characterized by short cultivation periods (< 10 

years) and long fallow periods (> 30 years). These old fallow lands are locally called 

“diuré”; 

ii. Fallow cultivation system or cyclical cultivation system (0.33 < IC < 0.66) with 5 to 10 

years of cropping, followed by 10 to 20 years of fallow; 

iii. Continuous cultivation system (IC > 0.66), often interrupted by very short fallow periods 

(1 - 3 years). 

These cropping systems were split into length of cultivation-fallow phases and soil tillage 

system (Table 2). Three groups of fallow periods were recorded: 1 - 10, 11 - 20 and up to 30 

years. Soil tillage included: 

i. occasional ploughing (at least every three years) and hand hoeing were performed 

during shifting and fallow cultivation systems; 

ii. biennial and annual ploughing were observed in the continuous cultivation system, 

respectively under cereal – cereal - cotton rotation and maize – cotton rotation. 

Ploughing was done up to 15 cm depth with tractor or oxen power for planting of maize or 

cotton. Hand hoe tillage was less than 5 cm soil depth.  

Organic matter fertilization (animal faeces, domestic wastes, compost), was performed 

mainly on-farm under permanent cultivation system. The amounts ranged from 2 to 5 tha
-1

 

and of 2-3 years frequency. 

Table 2: Number of plots according to major cropping systems and the tillage typologies. 

 Shifting system Fallow system Continuous cultivation 

 F30 C10 F10 F20 C10 Plough./2years Plough./year 

Sampled plots  5 4 4 5 5 5 5 

F30: 30-40 years fallow; F20: 11-20 year fallow; F10: 1-10 years fallow; C10: 1-10 years 



Journal of Agricultural Studies 

ISSN 2166-0379 

2017, Vol. 5, No. 4 

http://jas.macrothink.org 101 

cultivation; Plough./2years: biennial ploughing; Plough./year: annual ploughing 

1.3 Soil Sampling. 

Soil samples were collected from 33 fields including 14 natural fallow lands which were 

sampled during the dry season. Soil sampling depth was 15 cm and corresponded to the soil 

layer that was much influenced by tillage. Soil was randomly sampled in three replications. 

The replicates were bulked to constitute one composite sample per field for laboratory 

analysis. Soils were air dried, gently ground to pass a 2 mm mesh sieve, and later finely 

ground to pass a 200 µm sieve for C and monosaccharide determinations.  

 1.4 Laboratory Analyses 

Among the different methods of soil sugars extraction, Oades’s sequential hydrolysis was 

used (Oades et al., 1970). It presents the advantage to extract the majority of soil 

carbohydrates, while minimizing their degradation. Four grams (4 g) of ground soil at 200 

µm was pre-treated for 16 hours at room temperature with 72 % (22N) H2SO4. The solution 

was refluxed for three hours, after diluting the acid to 0.2 N. Interfering ions in the 

hydrolysate were reduced by elution, through anion and cation exchange resins. The solution 

was thereafter neutralized with 2M NaOH, in order to obtain a pH compatible with 

chromatographic eluants. The concentrations of the released soil sugar monomers were 

determined by a Dionex DX-600 (Dionex Corp., Sunnyvale, CA) ion chromatograph. The 

total polysaccharides content in each hydrolysate was calculated as the sum of the individual 

sugar contents. All measurements were expressed as carbon concentration in mgkg
-1

 of soil. 

The ratios R1 [(galactose+mannose): (arabinose+xylose)] and R2 (mannose : xylose) were 

calculated and used to assess the relative contribution of plants and microorganisms to the 

accumulation of carbohydrates in soils.  

The soil organic carbon content (g Ckg
-1

-Soil) was assessed using the Wakley and Black 

method, improved by Gnankambary et al. (1999) for Burkina Faso soils.  

1.5 Statistical Analysis 

The descriptive variables of cropping systems were coded from 1 to 7. The sampled plots 

were laid out in an unbalanced randomized block design where each of them constituted a 

replication (Table 2). Analysis of Variance (ANOVA) and means comparisons were 

performed, using Genstat software (6
th

 edition).  

2. Results 

The variations of soil contents in total organic carbon, monomeric sugars and total 

carbohydrate across the cropping systems are presented on Table 3. It shows that the various 

cropping systems induced significant (**P < 0.01) modifications in total SOC contents. The 

higher values were registered in plots under shifting cultivation system while the lower ones 

were found in annual ploughing plots. 

Extraction of soil carbohydrates gave two pentoses (arabinose, xylose) and four hexoses 
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(glucose, galactose, mannose, glucosamine). The sum of the monomeric sugar contents (total 

carbohydrate) represented 2 to 18 % of soil organic carbon. The amount of the monomeric 

sugars studied varied across the cropping systems in the following order: glucose > 

arabinose > galactose > glucosamine > mannose > xylose (Table 3). Glucose was the most 

dominant sugar. It represented an average of 40 % of the total soil carbohydrate. On the other 

hand, xylose had the lowest concentration. The total soil hydrolysable carbohydrate 

concentrations varied significantly (*P < 0.05) with cropping systems. The change was 

statistically significant (*P < 0.05) for glucose, mannose and galactose.  

Ratios R1 [(galactose + mannose) / (arabinose + xylose)], which assessed the relative 

contribution of microorganisms and plants to the accumulation of carbohydrates in soils, 

varied significantly (***P < 0.001) across the various cropping systems. The higher the ratio 

(R1) ≥1 was registered under fallow lands while the lowest one was observed in the annual 

ploughed plots (0.44). Therefore, the ratio R1 decreased with tillage intensity, and increased 

with the fallow age or duration.  Ratio R2 [mannose : xylose] also varied significantly 

across the various cropping systems (*P<0.05) and the values were higher (≥2) both under 

fallow and cultivated lands. (Table 3). 

Table 3: Contents of total organic carbon (g C/kg-Soil), monomeric sugar and the total 

carbohydrate of the soils (mg C/kg-Soil) from cropping landscape 

 Shifting system Fallow system Continuous cultivation LSD 
P < F 

F30 C10 F10 F20 C10 Plough./2years Plough./year 

Total Carbon 8.82a 7.0a 4.15bc 5.88bc 5.68bc 6.77ab 3.86c 2.62 **P < 0.01 

Arabinose 121.4 122.2 72.8 79.2 109.8 84.6 93.9 - NS 

Xylose 29.2 20.2 29.2 19.7 11.0 8.9 13. - NS 

Glucose 313.0a 189.0a 
160.0

a 

225.0a 77.0b 64.0b 107.0b 151.2 

*P < 0.05 

Glucosamine 53.3 52.2 46.0 39.4 25.6 24.1 23.0 37.9.0 NS 

Galactose 81.9a 47.1b 35.8b 46.7b 36.6b 28.1b 30.7b 37.2 *P < 0.05 

Mannose 78.6a 28.8bc 48.0ab 56.0ab 16.5bc 19.2c 18.1c 32.3 *P < 0.05 

Total sugars 677.0a 459.2ab 374.0b 466.0ab 285.0b 229.0b 286.0b 271.9 *P < 0.05 

Ratio (R1) 1.11a 0.56bc 1.00ab 1.01a 0.47c 0.50c 0.44c 0.33 ***P < 0.001 

Ratio (R2) 2.84 1.84 3.90 3.40 3.83 2.66 1.48 1.52 *P < 0.05 

F30: 30-40 years fallow; F20: 11-20 year fallow; F10: 1-10 years fallow; C10: 1-10 years 

cultivation; Plough./2years: biennial ploughing; Plough./year: annual ploughing;  

P < F: Levels of statistical significance 

LSD: Least Significant Difference; NS: Not Significant; 

Ratio (R1) = [(Galactose + Mannose) : (Arabinose + Xylose)] 

Ratio (R2) = Mannose : Xylose 

The numbers followed by the same letter in a row are not statistically different 
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Furthermore, expressing total soil carbohydrate contents as function of total SOC revealed 

that total sugar contents increased exponentially with increasing SOC contents (Fprobability 

= 0.04). This occurred under fallow lands but not under cropped soils (Figure 1). 

 

Figure 1. Relation between contents of total carbohydrates and total organic carbon of soils 

(g-C/kg-soil) from fallow and cropped lands 

Conversion of aged-fallow lands to arable lands induced a deeper decline in total sugars 

concentrations compared to total SOC (Table 3). The rate of this decline was significantly 

higher in galactose and mannose concentrations compared to soil glucose contents although 

the latter significantly (*P < 0.05) varied across the cropping systems. Arabinose 

concentrations remained relatively constant; but they increased slightly during the first ten 

years of cultivation. 

The change in land use (e.g. stopping cultivation) improves the accumulation of 

carbohydrates in the soil. The hydrolysable carbohydrate concentrations attained an 

equilibrium state faster under fallow practice. Indeed, the fallow lands did not induce 

significant differences in soil sugar contents regardless of their ages. Continuous cultivation 

led to the lowest soil sugar concentrations which remain relatively constant in spite of tillage 

intensity (Table 3). 

3. Discussion 

3.1Total Hydrolysable Carbohydrate Content  

During our study, only six monomeric sugars were extracted. However, their sum across the 

cropping systems represented 3 to 11 % of SOC which was relatively low compared to the 5 

to 25% of SOC reported by Cheshire (1979). Glucose was the most dominant monomeric 

sugar across the various cropping systems. This result is consistent with previous studies on 

both tropical and temperate soil (Baldock et al. 1987; Kouakoua et al. 1999; Larré-Larrouy et 
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al. 2003; Nacro et al., 2005). 

The contribution of total carbohydrate to total SOC under fallow practice (5-15%) was 

nevertheless higher than the range of 5 - 7% recorded under savannah soils from Côte 

d’Ivoire (Nacro et al., 2005) and 4 - 10% in shrub savannah soils from Congo (Kouakoua et 

al., 1999), and forested soils from Brazil (8 %) (Aminiyan et al., 2015). The results of this 

study are in agreement with Nacro et al. (2005) that high rainfall in wetter regions could 

induce deep leaching of carbohydrates. That explains the lower carbohydrates contents 

recorded in the top soils from Congo, Côte d’Ivoire and Brazil, which are located in wetter 

ecologies. Furthermore, the low clay and aggregate contents of these soils were not able to 

protect carbohydrates (Derrien et al., 2006). The contribution of carbohydrates to total SOC 

pool could differ significantly among the various ecosystems (soil and/or vegetation type, 

litter quality, soil microbial activity, etc.) as stated by Belay-Tedla et al. (2009). In addition, 

many methodological studies showed that the variation in carbohydrates concentrations of 

soils was largely dependent on the extraction method. It is known that the risk of sugar 

degradation is higher with pentose sugars (Fischer et al., 2007). 

3.2 Origin Of Hydrolysable Carbohydrate 

The variation in the content of a given sugar can be expressed relatively to the content of 

another one. This could provide an indication on the source of soil carbohydrate material. For 

that purpose, Oades (1984) proposed the ratio R1 [(galactose + mannose) / (arabinose + 

xylose)]. This was due to the fact that microbial populations mostly synthesize galactose and 

mannose (**P < 0.01). In contrast, materials derived from plants contain substantial amount 

of arabinose and xylose. 

In this study, the highest ratio R1 was lower (< 2) than that of Oades (1984), due to the 

tropical climate that promotes a rapid turn-over of labile pools of soil organic matter (Nacro 

et al. 2005; Ouattara et al., 2006). But this ratio is higher than 1 under fallow lands and lower 

than 0.5 in cultivated soil. This suggests that most soil sugars could be derived from 

microbial biomass, under natural vegetation. Many authors reported similar results in in 

tropical and temperate soils conditions (Baldock et al. 1987; Kouakoua et al. 1999; Rumpel 

and Dignac, 2006).  

However, other authors suggested that the ratio R2 [mannose / xylose] would be a more 

accurate indicator of the origin of soil carbohydrates (Murayama, 1977; Nacro et al., 2005). 

They argued that substantial amount of galactose and xylose can be derived from soil 

microorganisms and plant materials can synthetize arabinose. The high values of R2 clearly 

show that the soil carbohydrates were derived largely from microbial activities both under 

fallow lands and cultivated soil. This assertion is consistent with that of Nacro et al. (2005) 

who conducted a similar study under tropical forest and savannah conditions. Indeed, the 

rapid decomposition and turnover of organic matter which occur under tropical climate, 

resulted in the formation of microbial products (Larré-Larrouy et al., 2003; Nacro et al., 

2005). 

The ratios increased rapidly (mainly R1) as soon as cropped lands were laid fallow and 
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decreased with tillage intensity. This clearly indicates that soil carbohydrates are strong and 

early indicators of soil organic matter dynamics. 

3.3 Dynamics of Total SOC and Carbohydrates. 

The study showed that land uses induced significant effects on soil organic carbon. Organic 

matter stocks were higher under natural fallows than cultivated soils. This is in accordance to 

the fallowing function of soil fertility restoration (Arrouays et al., 1994; Nacro et al., 2005; 

Ouattara et al., 2006, Kahlon et al., 2013). The lowest SOC stock was recorded with the 

continuous cultivation system under annual ploughing. Soil tillage contributes to the creation 

of favourable pedo-climatic conditions for the biodegradation of organic substrates (litter, 

crop restitution, compost, etc.) and/or SOC mineralization (Balesdent et al., 2000). 

Mechanical destruction of the soil structure under annual ploughing could therefore expose 

SOC to rapid mineralization (Ouattara et al, 2006; Ouattara et al., 2011). 

Conversion of fallow lands to cropped soils resulted in significant decline in total carbon and 

carbohydrates contents. Similar findings were recorded in tropical soils (Rumpel and Dignac, 

2006; Ratnayake et al., 2013). This decline occurred with hexose sugars and mainly with 

galactose and mannose. In contrast, soil pentose sugars (arabinose, xylose) contents remained 

relatively constant irrespective of cropping systems, while those of arabinose increased 

slightly during the ten first years of cultivation. This latter situation could result in rapid 

decomposition and turnover of incorporated litter in soils (Nacro et al., 2005; Bernardi et al., 

2015), since soil microorganisms can synthesize arabinose. Furthermore, the significant 

contribution of arabinose to total hydrolyzable carbohydrates across cropping systems, with 

high values in cropped soil compared to fallow lands, corroborated this assertion. 

Since cultivated soils were converted to fallow lands, it resulted in a renewed increase in soil 

hexose sugar content (mannose and galactose). They increase rapidly and reach a state closer 

to a highest level, recorded under over 30 years-fallow lands. The exponential growth of total 

carbohydrates as function of increase in total SOC contents under fallow lands was in 

agreement with that observation. These results showed that total soil carbohydrates, and 

mainly those of microbial origin, are sensitive indicators of early changes in organic matter 

status under cropping systems (Ball et al., 1996). They revealed the key role of soil microbial 

activities in SOC accumulation and/or mineralization due to cropping systems (Ball et al., 

1996; Ouattara et al., 2009).  

However, this dynamic nature of carbohydrates was not always expressed in all soils as 

recorded by Baldock et al. (1987) who observed relatively constant total soil carbohydrates 

contents or each monomeric sugar irrespective of the cropping treatments in temperate soils. 

Loum et al. (2014) also showed that SOM dynamics was more expressive under tropical 

climate, where the pedoclimatic conditions were more favorable for rapid SOM’ turn over.  
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4. Conclusion 

This study revealed the dynamic character of total soil carbohydrates across cropping systems, 

including fallow and cultivated lands. The total soil carbohydrates accounted for only 3 - 

11 % of the total soil organic carbon, and they appeared to be one of early indicators of 

management-induced changes in organic matter. These changes occurred more on monomeric 

sugars which were derived from microbial synthesis. The high soil carbohydrate contents 

under fallow lands and their relative stability irrespective of fallow ages, emphasized the key 

role of fallowing in soil organic matter storage and the likely impact on soil sugars. 

Furthermore, the strong decomposition and rapid turnover of primary organic products (litter, 

crop restitution, compost, etc.), under tropical conditions, resulted in the formation of 

secondary microbial products. This process was more accelerated when fallow lands were 

converted to cropped soils. This occurred under annual ploughing, usually practiced in the 

cotton-based cropping system in West Burkina Faso. Unfortunately, fallowing, known as 

traditional practice for soil fertility restoration; is disappearing from the agricultural 

landscape of tropical savannah, due to population growth and continuous cropping. Therefore, 

in terms of perspective, the sustainable management of soil organic carbon in savannah 

cropped soil requires the use of cover crop, including fodder crop through viable and 

coherent cropping system practices. This can serve as an alternative to fallow practice. 
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