Reduction of Sample Size in the Soil Physical-Chemical Attributes Using the Multivariate Effective Sample Size

Letícia Ellen Dal Canton, Luciana Pagliosa Carvalho Guedes, Miguel Angel Uribe-Opazo

Abstract


Financial investment with collection and laboratory analysis of soil samples is an important factor to be considered when mapping agricultural areas with soybean planting. One of the alternatives is to use the spatial autocorrelation between the sample points to reduce the number of elements sampled, thus restricting the collection of redundant information. This work aimed to reduce the sample size of this agricultural area, composed of 102 sample points, and use it to analyze the spatial dependence of soil macro- and micro- nutrients, as well as the soil penetration resistance. The agricultural area used in this study has 167.35 ha, cultivated with soybean, which the soil is Red Dystroferric Latosol, and the sampling design has used in this agricultural area is the lattice plus close pairs. The reduction of the sample size was made by the multivariate effective sample size (ESSmulti) methodology. The studies with the simulation data and the soil attributes showed an inverse relationship between the practical range and the estimated value of the univariate effective sample size. With the calculation of ESSmulti, the sample configuration was reduced to 53 points. The Overall Accuracy and Tau concordance index showed differences between the thematic maps elaborated with the original and reduced sampling designs. However, the analysis of the variance inflation factor and the standard error of the spatial dependence parameters showed efficient results with the resized sample size.


Full Text:

PDF


DOI: https://doi.org/10.5296/jas.v9i1.17473

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Letícia Ellen Dal Canton, Luciana Pagliosa Carvalho Guedes, Miguel Angel Uribe-Opazo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Journal of Agricultural Studies   ISSN 2166-0379

E-mail: jas@macrothink.org

Copyright © Macrothink Institute

To make sure that you can receive messages from us, please add the 'macrothink.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

If you have any questions, please contact jas@macrothink.org.

------------------------------------------------------------------------------------------------------------------------------------------------------