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Abstract  

Latest breakthrough in high-throughput DNA sequencing have been launched different arenas 

for transcriptome analyses, jointly named RNA-seq (RNA-sequencing). It exposes the 

existence and amount of RNA in a biotic sample at a specific time by utilizing next 

generation sequencing (NGS). In this review, we aimed to explore the several methods which 

are applied in analyzing RNA-seq data. We also discussed its importance over microarray 

data. As establishment of several methods have already taken place to analyze RNA-seq data, 

therefore, further analysis is very essential to select the best one to avoid false positive 

outcomes. 
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1. Introduction 

1.1 Gene Expression 

The information contained within a gene turns into an effective product by gene expression. 

Genes can be expressed as RNA and translated into protein; expression arises one at the 

transcription level, in which RNA is produced from DNA, and one at the protein level, where 

protein is created from mRNA Several different steps are included through which DNA is 

transcribed into RNA and this in turn is modified into a protein or in some cases an RNA 
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(Cheriyedath, 2016). 

Genes control the production of proteins in a biological system through transcription and 

translation. Gene regulation is essential as the rate and manner of gene expression is 

controlled by it.  

Gene expression can be measured by several techniques including serial analysis of gene 

expression (SAGE), Complementary DNA (cDNA) subtraction, differential display, RNA 

sequencing and microarrays. Of them, microarrays and RNA sequencing have extensive 

application in gene expression analysis. 

1.2 Microarrays 

The genomics background for the word “microarray” usually specifies a device where 

single-stranded DNA oligonucleotides or “oligos” are attached to a compact exterior. As a 

result of its tendency of being double stranded, a sample staying in accurate buffer, is 

attached to the exterior part of the microarray. The inactive complementary DNA oligo will 

be combined with the independent swollen samples. Relying on this property, a fluorescent 

dye is either attached before to sample inclusion and hybridization or after the DNA 

hybridization to the microarray. One or two fluorescent dyes can be utilized before to sample 

inclusion. For conducting gene expression analysis of thousands of genes in this circumstance, 

a microarray is a floor of high-throughput DNA or RNA hybridization. Also, the whole 

genome can be covered by it (Wang et al.,2012). 

1.3 Gene Expression by Sequencing 

The progressive DNA sequencing technology is another extensively used method for 

exploring transcriptomes. Since the middle of 1990s, microarray was preferred for analyzing 

gene expression, but the stage for sequencing to be a captivating substitute technology for 

biological research is rapidly set by the Sanger sequencing biochemistry (Sanger et al., 1977). 

Fred Sanger developed the DNA sequencing method which now constructs the basis of 

automated "cycle" sequencing reactions. For two major advancements in the 1980s, 

researchers thought that the whole genome sequencing could be possible. A skillful procedure 

called polymerase chain reaction (PCR) was the first that allowed many copies of DNA 

sequence to be rapidly and properly produced. A converted automatic method of DNA 

sequencing which was built upon the chemistry of PCR was the second. Frederick Sanger 

developed the sequencing process in 1977. 

In 1990, the most vital step in the genome sequencing of higher organisms launched with the 

Human Genome Project (HGP) with the aim of complete mapping and realizing of all of the 

genes of human beings (Lander et al., 2001; Venter et al., 2001). As a consequence of 

massive success of HGP, the analysis of many complications regarding biology, disease and 

the environment is now possible by a very large-scale sequencing of genome. Recently, 

various next generation sequencing platforms are accessible including 454-FLX (Roche) 

(McGill University and Génome Québec Innovation Centre, 2014), the Genome Analyzer 

(Illumina/Solexa) (Illumina, 2009), and SOLiD (Applied Biosystems) (Life Technologies 
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Corporation, 2010). All these NGS platforms are based on parallelizing the sequencing 

process (Hutchsion, 2007; Pettersson et al., 2009; Shendure and ji, 2008). RNA-seq is the 

most familiar application for next generation sequencing. 

1.4 RNA Sequencing 

RNA-seq (RNA-sequencing) exposes the existence and amount of RNA in a biotic sample at 

a particular moment by utilizing next generation sequencing (NGS) (Chu and Corey, 2012). 

A RNA sequence experiment creates a group of cDNA fragments in all cases. At first a 

sample of purified RNA is cut and transformed into cDNA. Utilizing the short-read 

sequencing this collection of cDNA is then sequenced on a high-throughput platform such as 

Illumina, SOLiD or Roche454. A large number of short sequence reads that coincide to 

distinct cDNA fragments are generated by this short-read sequencing (Oshlack et al., 2010). A 

normal RNA-seq to be comprised of the steps named as design experiment, RNA preparation, 

library preparation, sequencing the cDNAs and analyzing the resulting short read sequences. 

An outline of RNA-seq experiment can be understandable by the following figure: 

 

 

 

 

 

 

 

 

 

Figure1. An outline of RNA-seq experiment 

The most common use of RNA sequencing is in the search for differentially expressed (DE) 

genes, that is, genes that exhibit differences in expression level between several conditions. In 

RNA-seq data analysis procedure, at first the images from sequencing reactions are captured 

and bases are arranged in FASTQ file format. These reads are then particularly mapped to 

a reference genome or transcriptome with the help of different alignment tools. Next the 

data are normalized by normalization process and then calculation of gene expression is 

conducted. Researchers can further proceed to gene discovery, transcript abundance and also 

alternative splicing. 

The type of differential gene expression is estimated by using statistical distributions. Poisson 

and Negative Binomial (NB) distributions are the two most extensively used distributions for 

fitting RNA-seq data. Some other distributions such as the Beta-binomial, have also been 
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suggested (Anders and Huber, 2010). 

1.5 Microarrays vs. RNA-seq 

In gene expression studies, microarrays and sequence-based methods are frequently used 

together, with a rising fame of the application of RNA-seq over microarrays in transcriptome 

analyses. The both platforms exhibit high one to one reproducibility and there is high 

correlation ranging from 0.62-0.75 between gene expression profiles created by the two 

methods (Fu et al., 2009). Intensities are measured by using continuous distribution in 

array-based technology, while RNA-seq provides discrete measurement of reads for each 

gene. 

Microarray technology confines the researcher to finding transcripts that correspond to 

existing genomic sequencing information. On the other hand, RNA-seq is perfect for 

discovery-based experiments by working efficiently for inspecting both known 

transcripts and searching new ones. For improved detection of genes, transcripts, and 

differential expression, RNA-seq possesses higher sensitivity and dynamic range of 

expression levels, with absolute rather than relative values, with lower technical variation and 

thus higher precision than microarrays. That’s why transcriptome studies are shifting to 

depend on sequencing-based methods rather than microarrays (Robinson and Smyth, 2007). 

Measuring expression levels in digital, in place of analog is one more benefit of RNA-seq 

(Matukumalli and Schroeder, 2009). 

In microarray analysis, it becomes tough to make lay-out of certain probes pointed at 

particular sequences because of the binding affinity constraint which makes part of the 

genome to be unreachable (Bradford et al.,2010). DNA sequences can be exactly mapped to 

particular areas of the genome. As a result, low background signal is provided by RNA-seq 

and noise in the experiment is simply omitted during analysis. Hybridization related matters 

which are observed in microarrays, are also removed in RNA-seq experiments. Thus, another 

signal-to-noise prevalence is presented (LaFranzo, 2013). Quantification of individual 

transcript isoforms is another advantage of RNA-seq (Malone and Oliver, 2011). 

RNA sequencing analysis is the most modern technology although it has some limitations and 

biases. Data storage and analysis of this sequencing process is more harder with no standard 

protocol which needs more time than any microarray technology. Despite of these, RNA-seq 

analysis is turning into an effective transcriptome profiling tool day by day as it has made 

possible the qualitative and quantitative advancements to gene expression analyses in a 

cost-effective way. 

1.6 Software Packages for Detecting Differential Expression 

For the detection of differential expression, some software packages are generally used in 

RNA-seq analysis. The most widely used software packages are summarized by the 

following Table 1. The default normalization method is underlined in the Table, when various 

normalization methods are available.  

https://cofactorgenomics.com/author/natalie_lafranzo/
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Table 1. Most widely used software packages which are applied in determining differential 

expression in RNA-seq. 

 Normalization Model 
Differential 

expression test 
Ref. 

DEGseq 
'None', 'loess' and 

'median'. 
Poisson model 

Z score test, 

Fisher's exact test 

(FET), large 

sample 

approximation, 

such as the LRT. 

(Wang et 

al.,2010) 

edgeR 

TMM/Upper 

quartile/RLE 

(DESeq-like)/None 

Negative-binomial 

model 
Exact test 

(Robinson 

et al.,2010) 

DESeq DESeqsizeFactors 
Negative-binomial 

model 
Exact test 

(Anders 

and 

Huber,2010 

baySeq 
Scaling factors 

(quantile/TMM/total) 

Negative-binomial 

model 

On the basis of the 

natural logarithmic 

scale, the estimated 

posterior 

likelihoods are 

notified. 

(Hardcastle 

and 

Kelly,2010)  

2. Methodologies 

2.1 Correctional Techniques 

Filtering and normalizing the data are the two correctional methods which are used in 

RNA-seq analysis. 

2.1.1 Filtering 

In RNA-seq analysis, we use filtering criteria to reduce the consideration of differentially 

expressed genes whose expression levels could be tolerably hypothesized to be below the 

level essential to affect cellular function or phenotype. Thus, we are permitted to emphasize 

on those that are most acceptable to be biologically significant (Manthey et al., 2014).  

2.1.2 Normalization 

Normalization is an imperative step in the RNA-seq data analysis. The amount of reads 

which are monitored because of a gene relies on the expression level and the length of the 

gene, and also on the RNA composition of the sample (Balwierz et al., 2009; Oshlack and 
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Wakefield, 2009). The effect of gene length and total sample RNA composition is lessened by 

the normalization process. As a result, a direct clear representation of the targeted gene 

expression level is shown by the normalized read counts. Several normalization methods are 

used in RNA-seq analysis. Some of them are Total Count (TC), Upper Quartile (UQ), Median 

(Med), DESeq, Quantile (Q) and Reads PerKilobase per Million mapped reads (RPKM) 

(Dillies et al.,2013). 

2.2 Different Methodology Used in this Analysis 

Several tests along with several software packages are applied in the recognition of 

differentially expressed genes in RNA-seq analysis. We will discuss some of these methods 

which are most commonly used. 

2.2.1 Fold Change 

Fold change is the simplest method to classify genes as differentially expressed. In this 

method log ratio between two conditions or the average of ratios when there are replicates 

among the two conditions are calculated and a particular gene is said to be differentially 

expressed for which the fold change value varies by more than a random cut-off value. 

However, this test is not a statistical test, it is preferred by biologist for its simplicity and it 

gives a sense about the difference between two conditions. The fold-change for gene i is 

defined as, 

-  or,  

Where,  and  are the means of the two groups' raw expression values  and , 

respectively.  is the raw expression levels of gene i in replicate j in the control group and  

 is the raw expression levels of gene i in replicate j in the treatment group. 

The procedure is to compute the log ratio between the expression levels in two conditions and 

identify genes as differentially expressed whose ratio exceed an arbitrary cut-off value(for 

instance, 2- fold). In fold change method, genes with large variances are vulnerable to make 

the cutoff easily just because of noise. So it is probable to have genes with large fold change 

which actually are not statistically significant just because the populations show much 

variability. Similarly, it’s also possible to have genes with small fold changes which are 

highly statistically significant because the populations show slight variability. 

2.2.2 Robinson and Smyth Exact Test 

Robinson and Smyth Exact Test is similar to Fisher’s exact test in the case of contingency 

tables. But here the hypergeometric probabilities are replaced by Negative Binomial. This test 

is only appropriate for the experiments with a single factor (Robinson and Smyth, 2008). 

2.2.3 Likelihood Ratio Test 

Likelihood ratio test is used in many RNA-seq algorithms for the detection of differential 

expression. The likelihood of the data considering no differential expression (null model) 

against the likelihood of the data considering differential expression (alternative model) is 
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compared by this test.  

D = -2log  

Where, D follows a χ2 distribution which can be applied to compute a p value. 

2.2.4 Controlling False Discovery Rate (FDR) 

RNA-seq data analysis involves in testing tens of thousands of genes simultaneously for 

differential expression in one study, hence it requires to testing multiple hypothesis 

simultaneously. Analyzing several hypotheses instantaneously increases the rate of type I 

error. To handle this problem several multiple testing correction methods have been 

developed, which are relied on family-wise error rate (Noble,2009) and False Discovery Rate 

(FDR) (Benjamni and Hochberg,1995). 

For the control of FDR several methods have been suggested including, Benjamini and 

Hochberg FDR, Storey’s positive FDR (pFDR) (Storey, 2003; Storey, 2003). Among these 

methods, the Benjamini and Hochberg FDR is the most flexible method compared to other 

methods and it is widely used in RNA-seq data analysis. Also, it is easily available with all 

statistical packages.  

2.3 Model 

Poisson and negative binomial (NB) are two more sensible models of differential expression 

in RNA-seq data. 

2.3.1 Poisson Model 

Primitive RNA-seq studies using only technical replicates informed that Poisson distribution 

is suitable to the counts for most of the genes. The main benefit of this distribution is its 

simplicity. According to further studies, Poisson assumption could not be able to identify 

biological variability, resulting in high false-positive rates because of neglecting the sampling 

error (Anjum et al., 2016). 

2.3.2 Negative Binomial Model 

The negative binomial distribution permits modeling of more general mean–variance 

relationship. Specifically for genes expressed at a higher level, the variance of counts is 

normally greater than their mean. This criterion is called “over-dispersion”. Negative 

binomial distribution models considering over-dispersion is the most appropriate for the 

distribution of read counts over biological replicates (Kukurba and Montogomery, 2015). 

2.4 Computing Tools 

A short brief of most common R software packages which are widely used in finding 

differentially expressed genes in RNA-seq analysis are given here. 

2.4.1 DEGseq 
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Based on the Poisson model, the R package DEGseq was used to detect differentially 

expressed genes for RNA-seq data and it is very simple to use. The model considers that the 

log-ratios of the different biological samples data possess a normal distribution, conditional 

on the log geometric mean of the data.  

'None', 'loess' and 'median' are the different choices for normalization in DEGseq. Among 

them, ‘none’ is the suggested method. 

Fisher's exact test (FET), the likelihood ratios test (LRT) and samWrapper are the three 

existing methods in DEGseq package. Among them, samWrapper was already established for 

the analysis of microarray data (Tushar et al., 2000). 

Z score test, Fisher's exact test (FET) and large sample approximation, such as the LRT are 

the preferences. Applying the methods of either Benjamini and Hochberg (Benjamini and 

Hochberg, 1995) or Storey and Tibshirani (Storey and Tibshirani, 2003), multiple testing was 

modified. 

2.4.2 edgeR 

edgeR is a R Bioconductor package which is outlined for the analysis of differential gene 

expression using replicated count-based expression data under a negative binomial model and 

established by Robinson and Smyth(Robinson,2010). The package is highly manageable. In 

this package, the negative binomial model is capable to isolate biological from technical 

variation. Empirical Bayes methods are applied by this approach to regulate the degree of 

over-dispersion (Smyth, 2004).  

The software package edgeR follows negative binomial distribution. Assume, the observed 

data is denoted by Ygij . Where, gene (tag, exon, etc.) is denoted by g, experimental group is 

denoted by i and the index of samples is denoted by j. 

We can model the read counts as,  

Ygij ~ NB(Mjpgi, ϕg), with mean μgi = Mjpgi and variance = μgi+μgi
2 
ϕ . Here, the library size (the 

sum of the counts of tags in a sample) is denoted by Mj and the proportion of tag g of the 

sequenced sample for group i is denoted by pgi .Biological or sample-to-sample variation is 

assessed by the over-dispersion parameter ϕg which is related to Poisson. The Negative 

binomial distribution converts to Poisson distribution if the over-dispertion parameter ϕg =0. 

For the Negative Binomial distribution, an exact test build upon the normalized data is 

applied by edgeR which is equivalent to Fisher's exact test (FET) although adjusted for 

over-dispersed data. Pairwise comparisons of groups are permitted by the ‘exact Test’ 

function. LogFC that is the log-fold change difference in the counts between the groups, and 

exact p-values are added by one of the objects which is created by this function. 

2.4.3 DESeq 

Anders and Huber (Anders and Huber, 2010) develop the Bioconductor package DESeq by 

adjusting the relationship of mean and variance of the over-dispersed model applied in edgeR. 

The model used in DESeq is based on the Negative Binomial distribution. Various 

coefficients of variation for various expression strengths are used in DESeq to estimate the 
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variance in a local style. As a result, inherent selection biases existing in the hit list of 

differentially expressed genes are eliminated. Thus, more stabilized and appropriate outcome 

is achieved. 

Now generalized linear models (GLMs) are ready to apply for DESeq. The model is: 

 

With   +  

Where,  is read count for gene i in the sample j,  is size factor for sample j,  is 

dispersion for gene i, µij is expectation for gene i in sample j, ƞij is linear predictor for gene i 

in sample j, xjl is l-th predictor for sample j (indicator or quantitative), βil is l-th regression 

coefficient for gene i. Where, log link, with sample-dependent size factors is the link function 

and the family is negative binomial with known dispersion. The negative binomial belongs to 

the exponential family if the dispersion is provided.  

We test for differential expression by computing a p-value that exhibits the probability of the 

null hypothesis. P-values are calculated through a method that is equivalent to a Fisher's exact 

test, using a 2x2 contingency table. With large samples, a chi-squared test can be used in this 

situation. More precisely, a χ 2 likelihood ratio test computes the p-values to fit GLMs of the 

negative binomial family with log link (Anders and Huber, 2016). 

2.4.4 baySeq 

Hardcastle and Kelly (2010) established an empirical Bayesian analysis approach to 

determine if there is differential expression between two different conditions (Hardcastle and 

Kelly, 2010) which gives permission for analyzing data for more complicated experimental 

designs. It starts by considering that the data follow a distribution, either Poisson or Negative 

Binomial (NB), which is specified by a set of latent parameters. Two hypotheses are 

visualized for each gene or tag. One of them assumes no differential expression between the 

two conditions for the gene, while the other assumes differential expression for the gene. If 

the prior estimates and the likelihood of the distribution of the data are provided, then one 

will be able to estimate the posterior likelihood under the two hypotheses to detect if there is 

differential expression (DE) for that gene. In general, baySeq suggests us to apply the 

Negative Binomial model. The requisite data format is similar to the edgeR package. Parallel 

processing is rendered through the 'snow' package for quicker processing. 

In baySeq package, no normalization process is suggested. 

The package employs two models. One of them is to consider a Poisson distribution on each 

tag that is Ygij ~ (Mjpgi,), where the prior for pgi is considered to follow gamma 

distribution pgi ~ Γ(αgi, βgi). Therefore, the model is titled as the Poisson-gamma approach. 

The data are Negative Binomial distributed, Ygij ~ NB (Mjpgi, ϕg) which is considered by other 

models.  
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On the basis of the natural logarithmic scale, the estimated posterior likelihoods are notified 

for this package. 

3. Conclusions 

Among these software packages mentioned above, DEGseq is the simplest to apply. baySeq 

needs much longer to run with the suggested number of iterations for the rebooting. 

Over-dispersed data which is very ordinary among biological samples cannot be tackled by 

DEGseq. The estimates of the over-dispersion parameter are rendered by the other packages 

based on Negative Binomial distribution. DESeq and edgeR are the methods which are both 

based on the negative binomial distribution. If we want to find more significantly 

differentially expressed genes, then edgeR was much faster than DESeq. Although it took 

somewhat longer time to estimate the dispersion. DESeq is preferred if the amount of false 

positives is a main interest. Otherwise, edgeR is lightly better to conduct differential 

expression analysis instead of probably bringing more false positives (Zhang et al.,2014). 

edgeR is the most adjustable package. It can manage both Poisson data and over-dispersed 

data without the necessity of pre-identifying the model. These two models are also contained 

in baySeq but one has to pre-identify which to apply. Simulations and real data analysis 

illustrate that the baySeq works well compared to the other methods in the analysis of 

pairwise differential expression (Hardcastle and Kelly,2010). 

In this review, we tried to discuss some packages to analyze RNA-seq data. However, it’s 

more important to find out the best technique to analyze such kind of data. Therefore, in 

future more comparative research is essential. 
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