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Abstract 

Background: Gene chip has a wide range of applications in screening disease markers.  

Methods: GSE63063 dataset including 238 healthy controls and 285 patients with 

Alzheimer’s disease (AD) was downloaded to investigate the whole blood mRNA expression 

pattern. Lumi and LIMMA packages of R software were used to screening 

differential-expressed genes (DEGs). We functionally annotate DEGs through DAVID 

database. Then STRING database and Cytoscape software were used to construct 

protein-protein interaction models for hub genes.  

Results: Our results indicated that 51 DEGs altered in AD patients compared with healthy 

controls. These DEGs was associated with transcription (BP), RNA binding (MF) and 

ribosome (CC) terms and the ribosome signaling pathway. In addition, Ribosomal protein 

S17 (RPS17) was identified as the top 1 in hub genes using maximal clique centrality. RPS17 

mutations reduced erythrocyte production and impaired brain development. Finally, the 

expression levels of the three genes (NDUFA1, RPL36AL, and NDUFS5) showed a good 

predictive effect. 

Conclusion: In conclusion, we explored the expression of genes in the AD blood and 

NDUFA1 may be a potential biomarker for predicting AD. 

Keywords: Alzheimer’s disease, whole blood, differentially-expressed genes, bioinformatics 
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1 Introduction 

Alzheimer’s disease (AD) is a common form of dementia in the elderly, which is 

characterized by amyloid plaques and neurofibrillary tangles (Henderson, 2014). There is an 

evidence that 24 million dementia patients and 4.6 million new cases are estimated to occur 

in the worldwide every year. Among them, 70% of dementia patients will become AD (Reitz 

& Mayeux, 2014). Notably, large affected population and long-term disability pose a huge 

challenge to public health (Sibener et al., 2014). Therefore, people have attached greatly 

importance to early diagnosis and treatment of AD. 

Clinically, the diagnosis of AD is based on neuropsychological tests such as hippocampal 

volumetric magnetic resonance imaging, micro mental status examination and clinical 

evaluation (Sui, Liu, & Yang, 2014). However, we only determine whether the patient was an 

AD through autopsy. Cerebrospinal fluid (CSF) have been demonstrated to be a vector 

reflecting pathological features in AD brain (Blennow, 2005). Generally, we diagnosed 

probable AD through β-amyloid 1-42 (Aβ1-42), total tau and phospho-tau-181 in CSF, which 

has high specificity and sensitivity (Humpel, 2011). However, patient screening is difficult to 

achieve because of the side effects of CSF collection. Blood-based tests would be widely 

accessible, non-invasive and economic (O'Bryant et al., 2011). 

With AD being studied most extensively, gene chip has attracted people’s attention. Public 

microarray data (GSE63063) was downloaded and processed to obtain differentially 

expressed genes (DEGs) altered in AD patients. Bioinformatics analyses were used to analyze 

the function and interactions of these DEGs. In addition, the diagnostic value of mRNA level 

of DEGs in distinguishing between AD patients and controls were also examined.  

2 Patients and Methods 

2.1 Public Microarray Data  

We downloaded the microarray data (GSE63063) from the gene expression omnibus (GEO) 

(www.ncbi.nlm.nih.gov/geo). Jamie et al. uploaded the dataset and examined the blood 

genome-wide transcription profile of AD and controls. Totally 516 samples were analyzed 

(healthy controls with 238 replicates, and AD patients with 285 replicates).  

2.2 Identification of DEGs 

Lumi package and Linear Models for Microarray Data package (LIMMA, 

www.biocondutor.org/packages/release/bioc/html/limma.html) of Bioconductor 

(www.bioconductor.org/) were used to screening DEGs altered in AD patients. The screening 

criteria were adjusted P < 0.001 (Z. Lin & Lin, 2017; L. Zhang et al., 2017) and |fold change | 

≥ 1.5. 

2.3 GO and KEGG Pathway Enrichment Analyses of DEGs 

Database for annotation, Visualization, and integrated Discovery (DAVID 

https://david.ncifcrf.gov/) provided four web-based modules (Annotation tool, GoCharts, 

KEGG charts and DomainCharts). We analyze the function and pathway enrichment of DEGs 

http://www.ncbi.nlm.nih.gov/geo
http://www.biocondutor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/
https://david.ncifcrf.gov/
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by using DAVID database (Huang da, Sherman, & Lempicki, 2009). The P < 0.05 was 

considered as a cut-off value. 

2.4 PPI Network Establishment and Receiver Operating Characteristic (ROC) Curves 

STRING (www.string-db.org/) can display physical and/or functional associations (score 

(median confidence) > 0.4) of proteins encoded by DEGs (Szklarczyk et al., 2015). Hub 

Object Analyzer (Hubba), an APP of Cytoscape (www.cytoscape.org/), visualized explores 

important nodes in an interactome network (C. Y. Lin et al., 2008). The diagnostic value of 

DEGs in distinguishing AD or healthy controls were analyzed, and areas under the curve 

(AUCs) were calculated. 

3 Results  

3.1 Identification of DEGs 

After data processing, we identified 51 DEGs (50 downregulated and 1 upregulated DEGs) 

altered in AD patients. Table 1 displays the top 5 downregulated and upregulated DEGs. The 

hierarchical clustering of expression data (AD vs. control: GPL6947) was shown in Figure 1.  

Table 1. The top 5 significant up-regulated and down-regulated differential expressed genes 

in the whole blood of AD patients 

GSE63063(cohort 1) GSE63063(cohort 2) 

ID_REF Gene 

symbol 

Log2(FC) Adj. P 

value 

ID_REF Gene 

symbol 

Log2(FC) Adj. P 

value 

Down-regulated    Down-regulated    

ILMN_1784286 NDUFA1 -1.1 4.24E-22 ILMN_1784286 NDUFA1 -1.1 4.24E-22 

ILMN_1656625 RPS24 -1.08 1.24E-11 ILMN_1656625 RPS24 -1.08 1.24E-11 

ILMN_1658283 RPL17 -1.05 5.99E-09 ILMN_1658283 RPL17 -1.05 5.99E-09 

ILMN_1731546 RPL26 -1.03 2.81E-11 ILMN_1731546 RPL26 -1.03 2.81E-11 

ILMN_2128128 SHFM1 -0.994 4.16E-18 ILMN_2128128 SHFM1 -0.994 4.16E-18 

Up-regulated    Up-regulated    

ILMN_1733559 RNA28S5 1.13 1.55E-07 ILMN_1733559 RNA28S5 1.13 1.55E-07 
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Figure 1. Heatmap for differentially expressed genes (DEGs). Grey and yellow color 

represents controls and AD patients respectively. The color bar denotes z-score adjusted 

expression values, green used for down-regulation and red for up-regulation 
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Figure 2. GO enrichment of DEGs. a, cellular component (CC); b, biological process (BP); c, 

molecular function (MF) 
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3.2 GO Enrichment and KEGG Pathway Analysis of DEGs and PPI Network Analysis 

The enriched GO terms consist of cellular component (CC), biological process (BP) and 

molecular function (MF). As is shown in Table 2, In the CC ontology, DEGs were correlated 

with the ribosome, e.g. cytosolic ribosome (9 genes), ribosomal subunit (10 genes) and 

ribosome (11 genes). In the BP ontology, these DEGs is mainly involved in the 

transcription-related terms, such as translational elongation (12 genes). viral transcription (10 

genes), nuclear-transcribed mRNA catabolic process, and nonsense-mediated decay (10 

genes). In the MF ontology, these DEGs play the function of the binding terms, e.g. structural 

constituent of ribosome (9 genes), RNA binding (18 genes) and poly(A) RNA binding (16 

genes). KEGG pathway enrichment analysis suggested the DEGs were mainly enriched in 

pathways of the ribosome (e.g. MRPS18C, RPL17 and RPL21), oxidative phosphorylation 

(e.g. ATP5I, ATP5J, and ATP5O) and Alzheimer’s disease (e.g. ATP5J, ATP5O, COX7C) 

(Table 3). 

Table 2. The enriched KEGG pathway of differential expression genes 

Term 
Cou

nt 
     P value Genes 

hsa3010: Ribosome 

 

11 

 

1.53E-12 

 

MRPS18C, RPL17, RPL21, RPL23, RPL31, RPL36AL, 

RPS24, RPS25, RPS27, RPS27A, RPS27L 

hsa190: Oxidative 

phosphorylation 

8 

 

    

7.84E-08 

ATP5I, ATP5J, ATP5O, COX7C, NDUFA1, NDUFB3, 

NDUFS5, UQCRH 

 

hsa5012: Parkinson s 

disease 
7 2.75E-06 

ATP5J, ATP5O, COX7C, NDUFA1, NDUFB3, 

NDUFS5, UQCRH 

hsa5010: Alzheimer s 

disease 
7 6.45E-06 

ATP5J, ATP5O, COX7C, NDUFA1, NDUFB3, 

NDUFS5, UQCRH 

hsa5016: Huntington s 

disease 
7 1.01E-05 

ATP5J, ATP5O, COX7C, NDUFA1, NDUFB3, 

NDUFS5, UQCRH 

hsa4932: 

Non-alcoholic fatty 

liver disease (NAFLD) 

4 0.00103 COX7C, NDUFA1, NDUFB3, UQCRH 

Totally 51 DEGs were submitted to the STRING website to construct PPI networks 

(combined scores > 0.4) (Figure 3). We identified the ribosomal protein S17 (RPS17) as the 

most important hub gene. 
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Figure 3. Protein-protein network of DEGs altered in AD patients. a, string database; b, the 

hub genes identified from protein-protein network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Receiver operating characteristic curve of the expression of three DEGs (a. 

NDUFA1; b, RPL36AL; c, NDUFS5) 
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3.3 Performance of These DEGs as a Biomarker 

ROC analysis was performed to predict probable AD patients. Three genes show better 

predictive effect. The AUCs based on NDUFA1 expression was 0.8616 (GSE63063 cohort 1) 

and 0.7609 (GSE63063 cohort 2). For RPL36AL, the AD patients and healthy controls were 

classified with an area under the curve of 0.8407 and 0.7705 respectively. Further, we 

determined the sensitivity and specificity of NDUFS5 expression. AD patients showed AUCs 

of 0.8525 and 0.7622 respectively compared with healthy controls. This finding indicated that 

the expression level of these genes may be a new biomarker predicting AD patients. 

4. Discussion 

Our group conducted bioinformatics analyses of gene expression profiles from healthy 

controls and AD patients to explore the pathogenesis of AD. Our results suggested that these 

DEGs (50 down-regulated DEGs and 1 up-regulated DEGs) was associated with ribosome 

(CC), transcription (BP) and binding (MF) terms and the pathway of ribosome. RPS17 was 

considered as the most important gene of PPU models.  

Ribosomal RNA genes modulate gene expression through cell transcription and translation 

processes and can. Payao et al. found that mature rRNA 28S and 18S ratio decrease 

significantly in the elderly groups compared to the young (Payao, Smith, Winter, & 

Bertolucci, 1998). The lowest 28S/18S ratio was observed in the AD patients (Payao et al., 

1998). Changes in rRNA and rDNA expression were associated with cellular and organism 

aging and AD pathogenesis (Rasmussen et al., 2015). RNA oxidation is a prominent feature 

of vulnerable neurons in AD (Nunomura et al., 1999). Mouse experiment demonstrated that 

the deficiency of ribosomal protein S6 kinase 1 expression is beneficial to spatial memory 

and synaptic plasticity. In this study, we found that these DEGs (such as RPL17, RPS17, and 

RPS27) are mainly enriched in ribosome-related terms. The lack of the mouse RPL17 alters 

the diversity of mature ribosomes by enhancing production of shortened 5.8S rRNA (Wang, 

Parshin, Shcherbik, & Pestov, 2015). The function of the remaining genes in AD has not been 

reported. Previous studies reported that RPS17 mutation would cause the reduction of red 

blood cells production contributing to anemia (Kenney & Meng, 2015). In vitro knockdown 

of gene expression disturbed pre-ribosomal RNA processing, zebrafish models of RPL27 and 

RPL27 mutations showed impairments of erythrocyte production and tail and/or brain 

development (R. Wang et al., 2015). Some studies demonstrated that lower hemoglobin 

correlated with cognitive impairment and AD (Faux et al., 2014). In other words, individuals 

with anemia are more likely to get AD.  

In addition, these DEGs (AD vs. control) were mainly involved in pathways of the ribosome 

(e.g. MRPS18C, RPL17 and RPL21), oxidative phosphorylation (e.g. ATP5I, ATP5J, and 

ATP5O) and Alzheimer’s disease (e.g. ATP5J, ATP5O, COX7C). Ribosomal RNA is one of 

the most abundant molecules in most cells and is affected by oxidative stress in the human 

brain (Ding et al., 2012). Oxidative stress may augment the production and aggregation of 

Abeta and facilitate the phosphorylation and polymerization of tau, thus promoting the 

initiation and progression of AD (Zhao & Zhao, 2013). Genetic variants within oxidative 

phosphorylation genes increase the risk of AD (Biffi et al., 2014). Decreased expression of 
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COX7C occurs in total homogenates of the entorhinal cortex in AD stages Ⅴ-Ⅵ when 

compared with stage Ⅰ-Ⅱ (Armand-Ugon, Ansoleaga, Berjaoui, & Ferrer, 2017). ATP5J may 

involve in the neurodegeneration and pathogenesis of Parkinson’s disease by regulating 

oxidative phosphorylation (Kong et al., 2018). 

Furthermore, 10 hub genes (RPS17, RPS24, RPL26, RPL31, RPS27A, RPS27, RPL36AL, 

TOMM7, RPS25, RPL23) were identified through MCC centrality. The human large subunit 

RPL36AL contacts the CCA end of P-site bound tRNA (Baouz et al., 2009). ROC analysis 

indicated that RPL36AL expression showed a better predictive effect. RPS25 was predicted 

as candidate biomarkers in peripheral blood for monitoring cardiac allograft rejection (Shen 

& Gong, 2015). Furthermore, RPS25 was identified to be a transcriptional target of p53; p53 

directly bounded to RPS25 promoter and suppressed RPS25 expression (X. Zhang et al., 

2013). 

Ma et al. analyzed four GEO datasets (Hippocampus: GSE1297 and GSE5281; PBMCs: 

GSE18309 and GSE4226) in the study (Ma et al., 2019). GSE18309 dataset included 3 

elderly samples and 6 AD patients, then sequencing with Affymetrix Human Genome U133 

Plus 2.0 Array (Ma et al., 2019). GSE4226 dataset included 14 elderly samples and 14 AD 

patients, then sequencing with Affymetrix Human Genome U133 Plus 2.0 Array (Ma et al., 

2019). In this study, GSE63063 dataset including 238 healthy controls and 285 AD patients 

was analyzed with Illumina HumanHT-12 V3.0 expression beadchip. The explanations for 

different DEGs (differential-expressed genes) among three datasets were as follows. First, the 

gender, age, lifestyle and disease severity of AD patients and sequencing platform were 

significantly different among three above datasets. Second, the sample size among three 

datasets was significantly different. The sample size of GSE18039 or GSE4226 is not enough 

to reach a convincing result compared to the GSE63063. Three, clinical heterogeneity and 

ethnic differences may also explain the different findings. Therefore, the data among three 

datasets is difficult to compare. Generally, the data from larger, well-designed dataset is more 

convincing. 

Several limitations need to be addressed in this study. To begin with, we did not validate 

these findings using experiments due to limited experimental conditions. In addition, the 

confounding factors such as cigarette smoking, comorbid medical disease and socioeconomic 

status would affect the results. Three, the dataset was conducted in UK, which might be not 

applicable to other ethnicities.  

In conclusion, this study explored the whole blood mRNA expression pattern of AD patients 

by bioinformatics methods. Furthermore, the expression levels of several genes were selected 

as potential biomarkers for predicting AD. However, larger studies are needed to confirm 

these results. 
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