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Abstract 

Emissions of volatile organic compounds (VOCs) by water-controlled or water-stressed 

Arabidopsis thaliana infested or not infested with Myzus persicae were evaluated by 

headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass 

spectrometry (GC-MS). The infestations were maintained for 0–24 h, 24–48 h, and 48–72 h, 

and the emission profile for each time period was determined. Under these controlled 

conditions, the proportion of 4-methylpentyl isothiocyanate and dimethyl disulfide emitted by 

aphid-infested, water-stressed Arabidopsis was greater than that for aphid-infested 

water-controlled Arabidopsis over the 48–72 h sampling period. The proportion of terpene 

emitted by aphid-infested water-stressed plants also significantly increased compared with 

the other treatments over the three assayed sampling periods. In contrast, the proportion of 

2-ethylhexanal (the only detected aldehyde) and ketones for the water-controlled plants 

generally remained high following aphid infestation. Taken together, these original data 

ascertain that abiotic factors can greatly interact to biotic stresses to alter the VOC emission 

profiles of plants.  

Keywords: Arabidopsis thaliana, Myzus persicae, water stress, water control, volatile 

organic compounds (VOCs) 
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1. Introduction  

Plants often release a wide variety of volatile organic compounds (VOCs) during their life 

cycle, and these can also differ significantly according to plant species, developmental stage, 

and environmental conditions (Dicke et al., 2009; Vickers et al., 2009; Holopainen and 

Gershenzon, 2010; Loreto and Schnitzler, 2010). Regarding the latter, both abiotic and biotic 

stresses can affect the emission profile of volatile compounds from plants (Van Poecke, 2007; 

Hatano et al., 2008; Holopainen and Gershenzon, 2010; Copolovici et al., 2012; Niinemets et 

al., 2013). 

Water stress is considered to be the most important environmental factor which directly 

influences the physiological and biochemical processes of plants (Niinemets et al., 2004; 

Loreto and Schnitzler, 2010). Under drought conditions, the emission of VOCs from the 

leaves of Mediterranean species has been found to be: (i) unmodified (Peñuelas and Llusià, 

1997); (ii) inhibited (Llusia and Penuelas, 1998); or (iii) reduced (Staudt et al., 2002). 

However, in other studies, water stress was found to increase VOC emissions from apple 

trees (Ebel et al., 1995; Vallat et al., 2005). Thus, the effect of water stress on plant VOC 

emission is not consistent throughout the literature and depends on the plant species and the 

considered biological model (Holopainen and Gershenzon, 2010; Loreto and Schnitzler, 

2010).  

The release of VOCs has been shown to depend on either stomatal behavior or the polarity of 

the compounds (Tholl et al., 2006; Loreto and Schnitzler, 2010). For example, the impact of 

abiotic factors (e.g., drought and salt) on plants can lead to a reduction in photosynthesis and 

stomatal closure, which can lead to changes in terpene emission by affecting the carbon 

supply into the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway (Loreto and Schnitzler, 

2010). Jones (1998) and Tardieu and Simonneau (1998) have also reported that the behavior 

of the stoma changes according to a plant’s water status. 

Herbivorous insects are well-documented biotic factors that affect the emission of plant 

volatile blends (Van Poecke, 2007; Dicke et al., 2009; Holopainen and Gershenzon, 2010; 

Kos et al., 2012; Louis et al., 2012). Of these, phloem-feeding insects can cause minor 

damage to plant foliage following infestations due to their salivary chemicals and/or proteins 

that act as signaling factors to affect the biosynthesis of volatile compounds by plants 

(Walling, 2000; De Vos and Jander, 2009). Studies of aphid-fed Arabidopsis thaliana (L.) 

Heynh (A. thaliana) have shown that these the plant systemic acquired resistance (SAR) are 

induced as a pest avoidance mechanism via the salicylate (SA) signaling pathway to release 

VOCs (e.g., terpenoids and glucosinolate (GS) metabolites) (Vallad and Goodman, 2004; Van 

Poecke, 2007; De Vos and Jander, 2010; Louis et al., 2012). As a host plant of green peach 

aphids (Myzus persicae), variations in the emission profile of volatiles from Arabidopsis due 

to aphid feeding is well-documented (Mewis et al., 2005; Kim and Jander, 2007; Van Poecke, 

2007; De Vos and Jander, 2009; Louis et al., 2012; Truong et al., 2014). In particular, Mewis 

et al. (2005) have reported that the emission of indole GS from Arabidopsis plants increases 

with aphid M. persicae infestation. 

In nature, plants are often subjected to multiple stress factors which can affect VOC emission 
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patterns (Wenda-Piesik, 2011; Mewis et al., 2012; Suzuki et al., 2014). Furthermore, VOCs 

play an important role in eliciting priming and in determining the integrated responses of 

plant responses to biotic, abiotic, or subsequent herbivorous stresses (Copolovici et al., 2014). 

Here, A. thaliana plantlets were submitted to both controlled and stressed water conditions 

prior to infestation by M. persicae, and uninfested plants were used as controls. The objective 

was to evaluate changes in the VOC emission profiles of Arabidopsis under various stress 

conditions, including combined biotic and abiotic stresses. 

2. Materials and Methods 

2.1 Plants and Insects 

A. thaliana (Col-0) seeds (Lehle Company, TX, USA) were sown in plastic pots (0.2 l) with 

potting soil (DCM, Belgium) and were cultivated in a growth chamber at 22 ± 0.6 °C, 16L: 

8D (LED lighting: 43 µmol m
-2

 s
-1

 photosynthetically active radiation during the light period), 

and 64.5 ± 2.6% relative humidity (RH). The green peach aphid, M. persicae (Sulzer), was 

reared on broad bean plants (Vicia faba L.) under controlled environmental conditions in a 

room at 20 ± 2 °C with a 16L: 8D photoperiod. Seedlings were watered twice a week for 

three weeks with the same volume of tap water (10–15 ml/pot) before being subjected to 

different water stress treatments. No morphological or growth differences were reported 

between the plants. 

2.2 Experimental Design 

Three-week-old Arabidopsis seedlings were watered to 100% of field capacity (FC) level 

(water-controlled) or to 50% of FC level (water-stressed). FC is the amount of water 

remaining in the soil after excess water has drained and the rate of downward movement is 

reduced (Diallo and Mariko, 2013). 

Field capacity levels were calculated according to the method suggested by Verdugo (2012) 

and Sales et al. (2013). Particularly, FC was estimated by saturating the plastic pot containing 

plant and soil with water. These pots were weighted after 36 h to obtain the average weight 

that corresponded to the FC. This value was defined as water control level (100% FC). The 

determination of water refill for all water levels (50 and 100 % FC) was calculated based on 

this value. To maintain FC levels in the different water regimes, all potted plants were 

weighted every 24 h and their water content was adjusted according to the requested value.  

Two weeks after the start of the water treatments, M. persicae were randomly placed on three 

water-controlled plants and three water-stressed plants to initiate conditions representing 

aphid stress. Seventy adults M. persicae were applied per plant according to Truong et al. 

(2014). Additional water-controlled and water-stressed plants were left without aphid 

treatment as controls. The aphids were left to feed on the leaves for three different time 

periods: 0–24 h, 24–48 h, and 48–72 h. Each treatment was performed in three biological 

replicates. 

Prior to the application of aphids, the Arabidopsis, including root balls (9–10 leaves, 

0.25–0.40 g/plant), were carefully removed from their plastic pots and aluminum foil was 
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wrapped around the root balls to reduce the detection of soil volatiles. Groups of three plants 

were then carefully placed in the reaction vessels (100 ml volume, Duran Group, Germany). 

Prior to their use, the reaction vessels were carefully cleaned with methanol, followed by 

milli-Q water, and then placed in an oven at 180 °C for 24 h in order to eliminate traces of 

contaminants. 

2.3 Headspace VOC Collection and GC-MS Analysis 

Similar to our recent study on the effect of temperature-herbivorous interactions on 

Arabidopsis volatile emissions (Truong et al., 2014), headspace solid phase microextraction 

(HS-SPME) using polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibers (65 µm; 

Supelo, Bellefonte, PA, USA) was performed. Briefly, volatile collection from Arabidopsis 

exposed to different stress treatments was performed over three time periods, 0–24 h, 24–48 h, 

and 48–72 h, with HS-SPME samplings collected six hours before the end of each period. In 

order to avoid contamination, the fibers were conditioned at 225 °C for 30 min prior to the 

onset of VOC collection. 

After the given sampling time, the fibers were desorbed during 5 min in a splitless injector 

(220 °C) of a gas chromatograph (GC) (Trace GC Ultra) coupled to a quadrupole-type mass 

spectrometer Trace Finnigan (Thermo-Fisher Scientific; Waltham, MA, USA). The GC was 

equipped with an apolar column (30 m; 0.25 mm inner diameter; 0.25 µm film thickness) 

(Optima-5-MS, Macherey-Nagel, Düren, Germany). The oven temperature program included 

a temperature increase from 40 °C to 220 °C (at a rate of 4 °C min
-1

) followed by a 1 min 

hold, and then an increase from 220 °C to 320 °C (at a rate of 100 °C min
-1

) followed by a 10 

min hold. Helium was used as the carrier gas (at a constant flow rate of 1.5 ml min
-1

). Mass 

spectra were obtained using a mass selective detector operating in electron ionization mode at 

70 eV with a multiplier voltage of 275 V. The scanned mass range was from 39 to 400 atomic 

mass units (amu) at a rate of one scan s
-1

. The transfer line and ion source temperatures were 

maintained at 230 °C and 250 °C, respectively. Volatile components were identified based on 

their retention times. The main peaks in the spectra were also compared with the Wiley and 

NIST MS 2.0 computed spectral databases. Blank samples were regularly analyzed to 

monitor the possibility of sample carry over and to confirm the peaks originating from the 

fibers. 

2.4 Statistical Analysis 

The relative abundance of individual VOCs was expressed as a ratio between their peak area 

and the total area of all identified VOCs from Arabidopsis plants subjected to each treatment. 

In a second step, the proportions of the chemical classes detected (i.e., alcohols, aldehyde, 

ketones, isothiocyanate (ITC), sulfide, and terpenes) were calculated. 

To evaluate the variations between the volatile blends emitted by the Arabidopsis plants 

exposed to different stress treatments over the three assayed time periods, principal 

component analysis (PCA) was performed using Minitab® 16.2.2 software (State College, 

PA, USA). PCA was applied to a dataset containing the mean relative abundances of the 

individual VOCs for each experimental treatment, and the principal components (PCs) were 
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calculated using a correlation matrix.  

ANOVAs (three-way) and subsequent post hoc Tukey’s tests using Minitab® 16.2.2 software 

were conducted to compare the mean relative abundances of the individual VOCs, as well as 

the relative proportions of the VOC chemical families emitted by the plants following various 

stress treatments, after the three time periods. For each subset, a log(x + 1) transformation of 

the data was performed when necessary in order to meet assumptions of normality and 

homogeneity of variances.  

3. Results   

Table 1 lists the VOCs that were identified by HS-SPME-GC-MS from aphid-infested and 

non-infested water-stressed and water-controlled Arabidopsis over three sampling periods 

that spanned 72 h. A total of ten volatile compounds were identified: 1-octen-3-ol, 

2-ethylhexan-1-ol, 2-ethylhexanal, 6-methyl hept-5-en-2-one, octan-2-one, 4-methylpentyl 

ITC, dimethyl disulfide (DMDS), limonene, menthol, and (E,E)-α-farnesene (Table 1).  

PCA resulted in the variations in the VOC emission profiles of the water-controlled and 

water-stressed Arabidopsis plants. In particular, PCA using the mean proportion of each 

individual compound captured 64.8% of the total variance on the score plot constructed with 

the two first PCs (e.g., PC1: 48.1% and PC2: 16.7%; Figure 1). Statistical correlations 

between the variables and the PCs (based on the PC1 and PC2 score plots) showed that 

DMDS (PC1: 0.77; PC2: -0.25), 1-octen-3-ol (PC1: 0.71; PC2: -0.13), 4-methylpentyl ITC 

(PC1: 0.68; PC2: -0.34), limonene (PC1: 0.60; PC2: -0.61), and 6-methyl hept-5-en-2-one 

(PC1: 0.56; PC2: -0.27) positively correlated with PC1, and negatively correlated with PC2. 

In contrast, menthol (PC1: -0.62; PC2: 0.02) and 2-ethylhexan-1-ol (PC1: -0.87; PC2: 0.15) 

negatively correlated with PC1 and positively correlated with PC2. Both PC1 and PC2 

positively correlated with (E,E)-α-farnesene (PC1: 0.76; PC2: 0.54), octan-2-one (PC1: 0.71; 

PC2: 0.56), and 2-ethylhexanal (PC1: 0.58; PC2: 0.63).  

PCA allowed spatial visualization of the chemical profiles emitted by the water-controlled 

and water-stressed Arabidopsis plants prior to with or without infestations by M. persicae 

over the three time periods into two groups (Figure 1). Group 1 primarily consisted of the 

VOC emission profiles from both water-controlled and water-stressed Arabidopsis without 

aphid feeding over the three time periods. In addition, volatile blends released by 

aphid-infested water-controlled plants after the first time course were also included in Group 

1. Group 2 included the VOC emission profiles of the water-controlled and water-stressed 

plants infested by aphids after all three time periods. The coefficients of correlation between 

the PCs and the variables indicated that the VOC emission profiles released from Arabidopsis 

in Group 1 were characterized by menthol and 2-ethylhexan-1-ol. In contrast, the VOC 

emission profiles for Group 2 were characterized by the presence of DMDS, 1-octen-3-ol, 

4-methylpentyl ITC, limonene, 6-methyl hept-5-en-2-one, (E,E)-α-farnesene, octan-2-one, 

and 2-ethylhexanal. 
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Figure 1. PCA of the VOC emission profiles of water-controlled (black) and water-stressed 

(red) A. thaliana prior to with or without infestations by M. persicae over three sampling 

periods (0–24 h, 24–48 h, and 48–72 h). The first (PC1) and second (PC2) principal 

components are shown.  

Abbreviations: Uninf: Uninfested; Inf: infested: sampling period 0–24 h (24 h), sampling 

period 24–48 h (48 h); and sampling period 48–72 h (72 h). 

Three-way ANOVAs, followed by post hoc Tukey’s test, showed that the alcohols represented 

the largest proportion of the volatile profile obtained for the uninfested water-controlled 

plants for the 24–48 h sampling period compared with the other stress treatments (p < 0.001) 

(Figure 2A). With respect to individual compounds, a significant increase in the proportion of 

2-ethylhexan-1-ol was also observed for uninfested water-controlled Arabidopsis over the 

second time period compared with the stress treatments (p < 0.001). In contrast, 1-octen-3-ol 

was only detected in VOC emission profiles of the infested water-controlled and 

water-stressed plants after the 48–72 h sampling period (p < 0.001; Table 1).  

The only detected aldehyde, 2-ethylhexanal (p < 0.001, Figure 2B and Table 1), and the 

ketones, 6-methyl hept-5-en-2-one and octan-2-one (p = 0.005, Figure 2C and Table 1), 

constituted the highest proportions of the VOCs detected when the water-controlled plants 

were infested by M. persicae compared with the other stress conditions over the 24–48 h 

sampling period. Furthermore, 6-methyl hept-5-en-2-one, had the highest levels of the VOCs 

emitted by the infested water-controlled plants (p < 0.001), whereas octan-2-one was only 

emitted by the infested water-stressed plants (p < 0.001) (Table 1).   

GS derivative volatiles (e.g., ITC and sulfide) were only emitted by infested plants (Figure 2, 

D & E). In particular, 4-methylpentyl ITC (the only ITC detected, p < 0.001) and DMDS (the 

only sulfide detected, p < 0.001) constituted the highest proportion of the VOCs emitted from 
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the water-stressed plants infested by M. persicae over the 48–72 h sampling period (Table 1).  

The relative abundance of terpenes significantly increased when the water-stressed 

Arabidopsis were subjected to aphid infestations compared to the other stress treatments over 

the 48–72 h sampling period (p < 0.001; Figure 2F). With respect to the single compounds, 

the proportion of limonene emitted was the highest for the infested water-stressed 

Arabidopsis during the 48–72 h sampling period (p < 0.001), while the proportion of menthol 

emitted was the highest for the uninfested water-stressed plants during the 0–24 h sampling 

period (p = 0.005). Emission of (E,E)-α-farnesene was detected for infested Arabidopsis 

during all three sampling periods (p < 0.001; Table 1).   

 

Figure 2. Mean relative abundance (% ± SD; n = 3) of each VOC chemical family emitted by 

the water-controlled and water-stressed A. thaliana prior to infestation by M. persicae over 
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the three assayed sampling periods (e.g., 0–24 h, 24–48 h, and 48–72 h).  

Uninf: uninfested plants; Inf: infested plants. Values labeled with the same letter did not 

statistically differ (p > 0.05, three-way ANOVA, post hoc Tukey’s HSD test). 

 

 

 

 

 

 

Table 1. Mean relative abundance (% ± standard deviation (SD); n = 3) of VOCs emitted by 

water-controlled and water-stressed A. thaliana prior to infestation by M. persicae over three 

sampling periods (0–24 h, 24–48 h, and 48–72 h) 

Compound 

VOC proportion (%) 

Infested water-controlled Uninfested water-controlled Infested water-stressed Uninfested water-stressed 

0–24 h 24–48 h 48–72 h 0–24 h 24–48 h 48–72 h 0–24 h 24–48 h 48–72 h 0–24 h 24–48 h 48–72 h 

Alcohols 

1-Octen-3-ol 1.70 ± 0.16
bc

 3.27 ± 1.00
a
 0.60 ± 0.02

d
 nd nd nd 2.90 ± 0.25

ab
 1.12 ± 0.23

cd
 1.46 ± 0.94

cd
 nd nd nd 

2-Ethylhexan-1-ol 63.57 ± 2.41
bc

 19.44 ± 1.52
f
 34.31 ± 4.65

d
 58.59 ± 6.90

cd
 80.32 ± 2.16

a
 77.22 ± 2.62a 25.80 ± 3.22ef 19.46 ± 2.96

f
 18.34 ± 2.26

f
 50.31 ± 3.24

d
 60.52 ± 5.15

cd
 73.52 ± 3.18

ab
 

Total alcohols 65.27 ± 2.50
bc

  22.72 ± 1.72
f
 34.91 ± 4.63

e
 58.59 ± 6.90

cd
 80.32 ± 2.17

a
 77.22 ± 2.63

a
 28.70 ± 3.41ef 20.58 ± 3.00

f
 19.79 ± 2.30

f
 50.31 ± 3.25

d
 60.52 ± 5.16

cd
 73.52 ± 3.19

ab
 

Aldehyde 

2-Ethylhexanal 0.64 ± 0.20
bc

 2.19 ± 0.49
b
 11.95 ± 2.31

a
 trace trace trace 1.31 ± 0.25

bc
 1.03 ± 0.15

bc
 1.53 ± 0.48

bc
 trace trace 0.12 ± 0.03

c
 

VOC = volatile organic compound; nd = not detected; trace (< 0.05%). For each individual 
VOC or each chemical family, mean values labeled with the same letter in the same row did 
not statistically differ (p > 0.05, three-way ANOVA, post hoc Tukey’s honest significance 
difference (HSD) test). 

 

Table 1 (continued). Mean relative abundance (% ± SD; n = 3) of VOCs emitted by 

water-controlled and water-stressed A. thaliana prior to infestation by M. persicae over three 

sampling periods (0–24 h, 24–48 h, and 48–72 h) 

Compound 

VOC proportion (%) 

Infested water-controlled Uninfested water-controlled Infested water-stressed Uninfested water-stressed 

0–24 h 24–48 h 48–72 h 0–24 h 24–48 h 48–72 h 0–24 h 24–48 h 48–72 h 0–24 h 24–48 h 48–72 h 

Ketones 

6-Methyl hept-5-en-2-one 1.15 ± 0.13
f
 38.62 ± 5.80

a
 3.04 ± 0.73

e
 0.56 ± 0.12

g
 5.80 ± 0.87

cd
 7.77 ± 1.69

c
 1.57 ± 0.21

f
 14.39 ± 4.75

b
 14.50 ± 2.35

b
 5.04 ± 0.41

cde
 4.64 ± 0.50

cde
 3.85 ± 0.84

cd
 

Octan-2-one 5.26 ± 1.22
b
 4.76 ± 1.97

bc
 13.40 ± 2.91

a
 nd nd nd 2.45 ± 0.88

cd
 13.84 ± 1.82

a
 1.85 ± 0.88

d
 nd nd nd 
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Total ketones 6.41 ± 1.10
d
 43.38 ± 7.74

a
 16.44 ± 3.59c 0.56 ± 0.12

e
 5.80 ± 0.87

d
 7.77 ± 1.69

cd
 4.02 ± 0.81

d
 28.23 ± 4.68

b
 16.35 ± 3.13

c
 5.04 ± 0.41

d
 4.64 ± 0.50

d
 3.85 ± 0.84

d
 

Isothiocyanates (ITC) 

4-Methylpentyl ITC trace trace 2.04 ± 0.74
b
 nd nd nd trace 2.11 ± 0.23

b
 4.62 ± 0.49

a
 nd nd nd 

Sulfide 

Dimethyl disulfide 0.62 ± 0.25
c
 2.48 ± 1.17

b
 2.43 ± 0.59

b
 nd nd nd trace trace 3.98 ± 0.75

a
 nd nd nd 

VOC = volatile organic compound; nd = not detected; trace (< 0.05%). For each individual 
VOC or each chemical family, mean values labeled with the same letter in the same row did 
not statistically differ (p >0.05, three-way ANOVA, post hoc Tukey’s HSD test). 

 

Table 1 (continued). Mean relative abundance (% ± SD; n = 3) of VOCs emitted by 

water-controlled and water-stressed A. thaliana prior to infestation by M. persicae over three 

sampling periods (0–24 h, 24–48 h, and 48–72 h) 

Compound 

VOC proportion (%) 

Infested water-controlled Uninfested water-controlled Infested water-stressed Uninfested water-stressed 

0–24 h 24–48 h 48–72 h 0–24 h 24–48 h 48–72 h 0–24 h 24–48 h 48–72 h 0–24 h 24–48 h 48–72 h 

Terpenes 

Limonene 5.55 ± 1.34
cd

 8.50 ± 0.73
c
 5.14 ± 1.08

cd
 0.76 ± 0.06

e
 1.20 ± 0.52

e
 5.78 ± 0.74

cd
 32.67 ± 4.83

a
 25.54 ± 3.57

ab
 45.50 ± 5.96

a
 1.45 ± 0.29

e
 17.27 ± 5.32

b
 4.01 ± 0.54

d
 

Menthol 12.07 ± 1.54
bcd

 6.38 ± 1.02
d
 9.60 ± 0.70

cd
 40.08 ± 6.87

a
 12.66 ± 2.32

bcd
 9.21 ± 1.57

d
 19.93 ± 3.05

b
 10.18 ± 0.66

cd
 7.47 ± 0.82

d
 43.19 ± 3.28

a
 17.53 ± 1.24

bc
 18.50 ± 2.73

b
 

(E,E)-α-Farnesene 9.44 ± 0.68c 14.26 ± 3.33
ab

 17.50 ± 1.01
a
 nd nd nd 13.35 ± 2.52

ab
 12.31 ± 1.68

bc
 0.74 ± 0.19

d
 nd nd nd 

Total terpenes 27.06 ± 3.23
fg

 29.15 ± 4.84
efg

 32.23 ± 0.53
efg

 40.84 ± 6.83
cde

 13.86 ± 2.84
h
 14.98 ± 2.07

h
 65.95 ± 3.91

a
 48.03 ± 2.39

bc
 53.71 ± 5.28

b
 44.64 ± 3.53

bcd
 34.80 ± 5.62

def
 22.51 ± 2.37

gh
 

VOC = volatile organic compound; nd = not detected; trace (< 0.05%). For each individual 
VOC or each chemical family, mean values labeled with the same letter in the same row did 
not statistically differ (p > 0.05, three-way ANOVA, post hoc Tukey’s HSD test). 
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4. Discussion 

The present results demonstrate that aphid-infested water-stressed Arabidopsis exhibit 

significant changes in their VOC emission profile (Figures. 1, 2 and Table 1). The results 

were carried out by comparing the volatile profiles of water-treated plants uninfested and 

infested by aphids over the three time periods. Moreover, blank analyses were also conducted. 

Similar observations have been reported by Copolovici et al. (2014) in studies of 

well-watered versus drought-stressed Alnus glutinosa leaves infested by the green alder 

sawfly, Monsoma pulveratum. 

The production of GS-derived volatiles by A. thaliana has been shown to be induced by aphid 

infestations (Mewis et al., 2005; Van Poecke, 2007; Ma and Ma, 2012; Truong et al., 2014). 

Similarly, in the present study, GS hydrolysis products, such as 4-methylpentyl ITC and 

DMDS, were detected in the VOC emission profiles of both water-controlled and 

water-stressed Arabidopsis infested by M. persicae. In particular, the proportion of 

4-methylpentyl ITC was the highest for the infested water-stressed plants over the last two 

sampling periods (Table 1). It is hypothesized that ITCs (e.g., methylthio-, methylsulfinyl- 

and methylsulfonyl-ITC) are generated by myrosinase-mediated degradation of GS molecules, 

which occurs when an aphid stylet is inserted into the phloem, hence favoring 

enzyme-substrate contact (Kim and Jander, 2007; Van Poecke, 2007; Louis and Shah, 2013). 

Additionally, del Carmen Martínez-Ballesta et al. (2013) reviewed that water stress lead to an 

increased GS accumulation in Brassica species. It is demonstrated that the alteration in GS 

content in broccoli (Brassica oleracea var. italica) in response to M. persicae infestation 

depended on plant water availability (Khan et al., 2011). In the interaction of Arabidopsis and 

combined water and insect stress, Mewis et al. (2012) reported that the production of 

aliphatic GS from water-stressed Arabidopsis infested with M. persicae is associated with 

down-regulation of the biosynthetic genes, MAM1, CYP79F1, CYP83A1, and UGT74C1. 

Tariq et al. (2013) found that GS concentrations (aliphatic and indole) greatly increased in 

Brussels sprout plants (Brassica oleracea L. var. gemmifera cv. Oliver) exposed to combined 

drought stress and root herbivory (Delia radicum L.). Based on these evidences, the 

interaction between water stress and aphid feeding can lead to altered 4-methylpentyl ITC 

production in this study.   

Published studies found that in Brassica species, the enzymatic thiol methyltransferase (TMT) 

have a strong influence on the hydrolysis of GS products to volatile sulfides (e.g., DMDS and 

dimethyl trisulfide (DMTS)) (Attieh et al., 2002; van Dam et al., 2012). It is reported that the 

artificial and natural damage to B. napus (L.) and B. juncea (L.) roots led to highest TMT 

activities in their leaves (van Dam et al., 2012). Existing data indicate that the physical 

conditions and herbivorous insects are extremely potent in the release of sulfur volatiles 

(Dugravot et al., 2005; Rouseff et al., 2008). In M. persicae-A. thaliana interaction, 

Kempema et al. (2007) demonstrated that aphid feeding caused up-regulation of two 

sulfurtransferase-like protein genes (Atg26280 and At1g29170) and greatly increased 

repression of 13 GS genes. In general, based on the existing literatures, the Arabidopsis 

sulfide production due to aphid-water stress interaction is still unclear.  
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In the present study, emission of terpenes (e.g., limonene and menthol) from water-stressed 

Arabidopsis increased compared with water-controlled Arabidopsis (Figure 2F and Table 1). 

This observation is consistent with the results of Gouinguené and Turlings (2002), Ormeno et 

al. (2007), and Wenda-Piesik (2011), where the emission of induced VOCs (e.g., 

monoterpene and sesquiterpene) were found to be higher for plants exposed to dry soil or 

drought stress conditions. Correspondingly, it has been suggested that the release of terpenes 

by plants is dependent on leaf vapor pressure (Holopainen and Gershenzon, 2010; Loreto and 

Schnitzler, 2010). In corn (Zea mays L.) plants infested by the Spodoptera littoralis 

caterpillar, Gouinguené and Turlings (2002) detected higher emissions of (E,E)-α-farnesene 

and (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) when the corn were cultivated on dry soils. 

Similarly, in the present study, the combination of M. persicae feeding and conditions of 

water-stress led to an increase in the proportion of terpenes emitted by Arabidopsis compared 

to the Arabidopsis that were only subjected to a single stress (Figure 2F and Table 1). It has 

been hypothesized that insect-infested plants may invest more resources in the biosynthetic 

production of induced defense compounds under water stress conditions (Gouinguené and 

Turlings, 2002). Wenda-Piesik (2011) also observed an increase in the amount of terpenes 

emitted by insect (Fusarium spp.)-infested winter wheat plants under water stress conditions.   

Similar to the terpene results, a higher proportion of aldehyde and ketone emissions were 

detected for the infested water-stressed plants compared with the uninfested plants over the 

three assayed sampling periods (Figure 2, B & C). In contrast, a higher proportion of alcohols 

were emitted by the water-stressed plants that were not subjected to aphid feeding (Figure 

2A). Existing data indicate that the emissions of aldehydes, ketones, and alcohols are related 

to stomatal behavior under water stresses or infestations by aphids (Chen et al., 2003; Filella 

et al., 2009; Loreto and Schnitzler, 2010; Giorgi et al., 2012). For example, Giorgi et al. 

(2012) found an increase in ketone emission in M. persicae-infested Achillea collina 

compared with uninfested plants. However, the physiological state and corresponding 

mechanistic details that lead to the release of VOCs remain unclear (Holopainen and 

Gershenzon, 2010; Loreto and Schnitzler, 2010). 

In conclusion, the present results demonstrate that water-controlled and water-stressed A. 

thaliana exhibit significant changes in their emission of VOCs (Figures 1, 2 and Table 1). 

Furthermore, when M. persicae feeding was an added stress for these two sets of water 

conditions, the emission of specific plant VOCs was induced. Thus, the present findings 

ascertain that abiotic stress factors may greatly interact to biotic stresses, and the impact of 

such combinations can modify VOC emission profiles for plants.  
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