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Abstract 

To model students’ math growth trajectory, three conventional growth curve models and three 
growth mixture models are applied to the Early Childhood Longitudinal Study 
Kindergarten-Fifth grade (ECLS K-5) dataset in this study. The results of conventional 
growth curve model show gender differences on math IRT scores. When holding 
socio-economic status (SES) constant, gender differences reduced on the mean start IRT 
scores, growth rate, and acceleration rate. Growth mixture modeling applied to ECLS K-5 
children reliably identified three classes of children based on their math growth trajectories. 
Growth mixture modeling results indicate that gender differences are different depending on 
different math development classes. After controlling for SES, growth mixture modeling 
results show that gender differences on the mean start IRT scores, linear growth rate, and 
quadratic growth rate reduced in all subpopulations. Growth mixture modeling result also 
show that after controlling for gender, the effects of SES on math development are different 
in different subpopulations.  

Keywords: Math growth trajectory, Conventional growth curve model, Growth mixture 
model, ECLS K-5 dataset 

1. Introduction 

Sponsored by the National Center for Education Statistics, Early Childhood Longitudinal 
Study Kindergarten-Fifth grade (ECLS K-5) is designed to document the educational status 
and progress of a nationally representative sample of children from kindergarten through fifth 
grade (U.S. Department of Education, 2000). For the base year, a nationally representative 
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sample of 21,260 children attending kindergarten in the Fall of 1998 was drawn through the 
use of a multistage probability sample design. The primary sampling units were geographic 
areas consisting of counties or groups of counties from which 1,280 public and private 
schools offering kindergarten programs were selected. A target sample of approximately 24 
children from each public school and 12 children from each private school was drawn, with 
Asian/Pacific Islander students oversampled. Each sampled child was linked to his or her 
kindergarten teacher (Tourangeau, Nord, Lê, Pollack, & Atkins-Burnett, 2006).  

Applying this dataset, there are many studies focused on factors that influence reading 
achievement or reading trajectory from kindergarten to first grade (e.g., Dawson & Williams, 
2008; Duncan & Magnuson, 2005; Han, 2008; Hong & Raudenbush, 2005; Kaplan, 2002, 
2005; McCoach, O’Connell, & Levitt, 2006; Xue & Meisels, 2004). The other content area, 
mathematics, as one way to understand the world around us, not only sets a solid foundation 
for later academic study but also prepares students as citizens of the technological society. 
The current study focuses on math growth using ECLSK-5 dataset.  

The statistical techniques most often applied to address development questions are either 
variable-centered or person centered (Connell & Frye, 2006; Jung & Wickrama, 2008). 
Variable-centered approaches such as regression, factor analysis, and structural equation 
modeling focus on describing the relationship among variables. This approach may obscure 
the real variability in scores across individuals and groups of individuals within a sample 
since it employs the average variable scores across a sample. Conventional growth curve 
model is primarily variable-centered in that it based on the assumption that the studied 
sample is from a single population with the same average start value and same average 
growth rate (Kaplan, 2002). Nevertheless, conventional growth curve model has been 
routinely applied to educational data to examine developmental trajectories. Person-centered 
perspective, on the other hand, relaxes the heroic assumption of single population and 
addresses information about interindividual differences in intraindividual change over time 
(Nesselroade, 1991). Growth mixture model is a person-centered approach to model students’ 
academic achievement over time as it assumes that each smaller population has its own 
unique trajectory. As one of the recent developments in statistical techniques for handling 
longitudinal data from a person-centered perspective, growth mixture modeling technique 
offers a robust mean of identifying subgroups of populations following distinct growth 
trajectories, by which the unobserved heterogeneity of individual difference in growth over 
time can be captured.  

2. Perspective and Research Questions 

The mathematics assessment items in the ECLS k-5 data were designed to measure skills in 
conceptual knowledge, procedural knowledge, and problem solving. Considering the critical 
importance of mathematics, both conventional growth curve modeling and growth mixture 
modeling are conducted in this study to investigate students’ math growth trend in the 
elementary years. To investigate students’ general level and rate of math growth, conventional 
growth curve model without predictors is initiated first. The general theory of students’ math 
achievement growth is curvelinear during the elementary school years (e.g., Raudenbush, 
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2001; Singer & Willet, 2003). In line with this general theory of growth, a quadratic slope is 
also included in the initial conventional growth curve model. The gender difference in math 
performance is a concern in many studies (e.g. Hyde, Fennema, & Lamon, 1990; Lindberg, 
Hyde, Petersen, & Linn, 2010; Penner & Paret, 2008; Thompson & Dinnel, 2007). In order to 
investigate whether there are any significant gender differences on math growth among the 
ECLS K-5 students, gender as a variable is added to the first model to form the second 
conventional growth curve model. Socio-economic status (SES) is one of the most widely 
used contextual variables in educational research. There are substantial studies focusing on 
the effect of SES on students’ academic achievement (e.g., Bradley & Corwyn, 2002; Duncan 
& Magnuson, 2005; Sirin, 2005), therefore, in the third conventional growth curve model, in 
addition to gender, SES is also added as time-varying predictor. To test whether there exists 
more than one population, the above three models are then performed in the framework of 
growth mixture model. The specific research questions for the growth mixture models are: (1) 
Are there unique classes of children defined by their growth curves in math? (2) How do the 
growth rates for children within these classes differ between boys and girls? (3) After 
controlling for SES, how do the growth rates differ between boys and girls within each class?  

3. Data Source 

The released public use ECLS K-5 includes 6 rounds of data collection: Fall and Spring 
kindergarten, Fall and Spring first, Spring third, Spring fifth. To conduct the conventional 
growth curve model and growth mixture model, five measurement points were chosen in this 
study: Spring kindergarten, Fall first, Spring first, Spring third, and Spring fifth. The initial 
measurement point, Fall kindergarten, provides convenience to understand the initial status of 
children’s math. Nevertheless, initial measurement point only provides little information 
about the growth rate at the onset of the study, this measurement points is not included in the 
current study. Among all the participants, 2818 students who were measured at those five 
waves are selected in this study. As to the missing data, generally, there are three types of 
missing data: missing completely at random, missing at random, and missing not at random. 
In the ECLS K-5 data, it is reasonable to assume data missing at random. In the current study, 
missing data is handled by maximum likelihood method, and software program Mplus is used 
to get estimation (L. K. Muthén & B. O. Muthén, 2001).  

4. Methods 

4.1 Conventional Growth Curve Modeling 

Conventional growth curve modeling is a procedure that has been advocated for the study of 
intraindividual differences in change. Conventional growth curve modeling can provide an 
estimate of the average initial and average growth rate of the interested population. From the 
structural equation modeling perspective, conventional growth curve modeling is specified in 
two parts: (1) measurement part that links repeated measures of an outcome to latent growth 
factors (2) a structural part that links latent growth factors to each other and to 
individual-level predictors (Kaplan, 2002). If we define the outcome variable as a p – 
dimensional vector y, following Muthén (2002) and Kaplan (2002), the measurement part of 
the model can be expressed as 
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yi = v + Ληi + Kxi + ei                          (1) 

Where, the p – dimensional vector yi representing the empirical growth for child i; v is a p – 
dimensional parameter vector of measurement intercept; Λ is a p × m matrix of factor 
loadings; η is a p – dimensional parameter vector of latent variables; K is a p × q parameter 
matrix of regression slopes; x is a q – dimensional vector of covariates; and e is a p – 
dimensional vector of residuals.  

The structural part of the model is defined in terms of the latent variables regressed on each 
other and the q – dimensional vector x of independent variables,  

ηi = a + Bηi + Гxi + ξi                        (2) 

Where, η is defined as before; a is a m – dimensional vector that contains the population 
initial status and growth parameters μπ0 and μπ1; B is an m × m matrix containing regression 
slopes that relate the latent variables to each other;  is an m × q matrix of regression 
coefficients relating the latent growth factors to the independent variables; and ξ is an m – 
dimensional vector of residuals.  

4.2 Growth Mixture Modeling 

Under the assumption that there exists a finite mixture of populations each with their unique 
growth trajectories, growth mixture modeling combines conventional growth curve modeling 
with latent class analysis (Clogg, 1995). For example, in the ECLS K-5 data, it is possible 
that children sampled from a population exhibiting very different class of math growth: some 
children may have very rapid rates of growth in math that level off quickly, others may show 
relatively normal rates of growth, and still others may show slower rate of growth. If this is 
so, then growth mixture modeling can capture each unique trajectory.  

The specification of the growth mixture model is similar to that of the conventional growth 
curve model. The difference lies in allowing different growth trajectories for different classes 
(Kaplan, 2002). To reflect the presence of trajectory classes, Equations (1) and (2) can be 
rewritten as,  

yi = v + Ληi + Kxi + ei                         (3) 

ηi = ac + Bcηi + Гcxi + ξi                        (4) 

Where, the subscript c represents trajectory class (c = 1, 2, …, C). For growth mixture 
modeling, maximum likelihood with robust standard errors and a mean and variance adjusted 
chi-square was used as the method of estimation (L. K. Muthén & B. O. Muthén, 2001).  

5. Results 

Table 1 presents the selected results for the three conventional growth curve models. Model 1 
presents the estimate of the growth curve model without predictors. A path diagram of this 
model is shown in Figure 1. The initial status was set at Spring Kindergarten. The results in 
Table 1 indicate that the average math IRT scores at Fall Kindergarten is 33.405 IRT points, 
with a significant and positive growth rate of 12.578 IRT point per semester and a significant 
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deceleration rate of 0.442 IRT point per semester. Students’ mean math achievement vary 
significantly around the starting point with significant variation in rate of change on math 
achievement over time and significant variation in deceleration over time.  

 

Table 1. Selected results for three conventional growth curve models 

Coefficient Model 1 Model 2 Model 3 

Mean (int) 33.405 34.064 33.816 

Mean (slope) 12.578 13.048 13.113 

Mean (quad) -0.442 -0.471 -0.474 

Var (int) 131.693 131.218 105.017 

Var (slope) 10.618 10.423 9.851 

Var(quad) 0.062 0.060 0.064 

r (int with slope) 0.459 0.456 0.332  

r(int with quad) -0.465  -0.465  -0.367  

r(slope with quad) -0.898 -0.899 -0.896 

 

int on gender  -1.294  -1.034 

slope on gender  -0.919 -0.709 

quad on gender  0.056 0.040 

 

Math1 on SES1   4.500  

Math2 on SES2   4.027 

Math4 on SES4   5.467 

Math5 on SES5   8.076 

Math6 on SES6   8.131 

 

 BIC = 107141.4 BIC = 107119.8 BIC = 92497.7 

Note. boys = 0, girls=1; All numbers are significant. 

 

Students who start with high mean math achievement have significantly fast linear growth 
(r(int, slope) = 0.459) and significant deceleration (r(int, quad) = -0.465). Students who have faster 
growth of math achievement have significantly faster deceleration (r(slope, quad) = -0.898).  
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Results of model 2 in Table 1 provides estimates for conventional growth curve model with 
gender as a time-invariant predictor of initial status, growth rate, and quadratic term. A path 
diagram of this model is shown in Figure 2. The regression of initial status on gender shows 
that girls have a significantly lower initial mean math IRT scores, and a significantly slower 
linear growth rate and but a significantly faster acceleration rate. Figure 3 presents the 
estimated average growth trajectories for boys and girls based on conventional growth curve 
model.  

 

Initial 
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Figure 1. Initial conventional growth curve model of math achievement 
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Figure 2. Conventional growth curve model of math achievement with time-invariant 
predictors 

 

 

Figure 3. Estimated math growth trajectories for boys versus girls 
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Figure 4. Conventional growth curve model of math achievement with time-invariant and 
time-varying predictors 

 

Model 3 in Table 1 provides estimate for the growth curve model with time-invariant 
predictor gender, and time-varying predictor SES. A path diagram of this model is shown in 
Figure 4. Results for model 3 in Table 1 show that the addition of SES does not change the 
results dramatically compared with model 2, insofar as, holding SES constant, girls start with 
a significantly lower mean math IRT scores, have significantly slower linear growth rate, but 
significantly faster acceleration rate. In model 3, once taking into account of SES, the gender 
differences reduced as shown in Figure 5. The results for time-varying covariates in model 3 
suggest that, holding gender constant, the effect of SES is weaker in the first three weaves 
than that in the last two weaves.  
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Figure 5. Estimated math growth trajectories for boys versus girls controlling for SES 

 

 

Figure 6. Empirical math growth trajectories for a random sample of 20 ECLS K-5 children 

 

Figure 6 presents the empirical trajectories for 20 randomly chosen students on the math IRT 
scores over the selected five ECLS K-5 waves. In Figure 6, it shows that, over the selected 
time points, a few students start with a high math IRT scores and grow rapidly; majority of 
the students start with a medium math IRT scores and grow with a moderate speed; still other 
students start with relatively low math IRT scores and grow slower. The general picture in 
Figure 6 implies that a single population assumption in conventional growth curve model 
simplified the variety of students’ math growth over time.  

As noted earlier, conventional growth curve modeling assumes that the sample is drawn from 
a single population characterized by one set of average growth parameters. To test whether 
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this assumption is plausible, the above three models were rerun in the framework of growth 
mixture modeling. When conducting growth mixture modeling, the optimal number of 
classes can be determined in a couple of ways: BIC, posterior probability, entropy, and 
substantive consideration (Connell & Frye, 2006; Kaplan, 2002; Muthén 2003). Bayesian 
Information Criteria (BIC) is the most used model fit indices across models. In Mplus, BIC is 
calculated as the sum of -2 times the loglikelihood value of the model, plus the number of 
model parameters times the natural log of the sample size. Lower scores represent better 
fitting models. To begin with, a one-class, two-class, and three-class solution that did not 
contain any predictors were specified. The BIC values for these solutions are 123975.7, 
107540.1, and 107003.1, respectively, suggesting that the three-class solution obtained the 
best fit. In addition to BIC, the posterior probabilities of classification based on three-class 
solution in table 2 shows reasonably good classification.  

 

Table 2. Average posterior probabilities for three-class solution 

 Class 1 Class 2 Class 3 

Class 1 0.938 0.062 0.000 

Class 2 0.137 0.863 0.001 

Class 3 0.000 0.000 1.000 

 

The quality of classification across models can also be examined by entropy. Entropy is a 
summary measure of the probability of membership in the most-likely class for each 
individual. There are no specific guidelines for interpreting entropy, but possible values 
ranges from 0 to 1.0, and values closer to 1.0 represent better classification (Connell & Frye, 
2006). The entropy is 0.786 and 0.829, respectively for 2 classes and 3 classes (not available 
for 1 class). Considering the justification and interpretability of latent trajectory classes, this 
paper classified the studied population into three classes: slower-math development class, 
moderate-math development class, faster-math development class. Mplus output shows that 
the proportion of these three classes is 35%, 57%, and 8%, respectively. Figure 7 presents the 
estimated math growth trajectories for these three classes.  
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Figure 7. Estimated math growth trajectories by trajectory class 

 

For each class, three models were then specified. The first model contains no predictors. The 
second model adds gender, and the third model contains both gender and SES as covariates. 
Figures 8 presents the estimated math growth trajectories for boys and girls based on growth 
mixture model. Figure 9 presents the estimated math growth trajectories for boys and girls in 
three classes when adding SES as time-varying covariate. Appendix 1 presents Mplus code 
used to conduct the analysis on model 3 (gender as time-invariant covariate and SES as 
time-varying covariate).  

 

 

Figure 8. Estimated math growth trajectories for boys versus girls by trajectory class 
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Figure 9. Estimated math growth trajectories for boys versus girls by trajectory class 
controlling for SES 

 

Selected results for growth mixture models are shown in Table 3. An inspection of Table 3 
shows that, in slower-math development class, girls are ahead of boys on mean IRT scores, 
grow faster but decelerate faster than boys. After controlling for SES, girls are behind of boys 
on mean start IRT scores, grow slower and decelerate faster. The differences between boys 
and girls on mean start IRT scores, linear and quadratic slopes are nonsignificant though. In 
moderate-math development class, girls are behind of boys on mean IRT start scores, grow 
slower but accelerate faster than boys. After controlling for SES, gender differences greatly 
reduced in moderate-math development class. The differences between boys and girls on 
mean start value are nonsignificant, but the differences are significant on the linear and 
quadratic slopes. In faster-math development class, girls are behind of boys on mean IRT start 
scores, grow slower but accelerate faster than boys. After controlling for SES, girls grow 
faster but also decelerate faster than boys. The differences between boys and girls are 
significant on the mean start value but nonsignificant on linear and quadratic slopes. An 
inspection of model 3 across three classes suggests that, after controlling for gender, the 
effect of SES is weaker in the first three waves than that in the last two waves in slower-math 
development class; in moderate-math development class, the effect of SES is approximately 
constant across the selected waves (except wave 2); in faster-math development class, the 
effect of SES is stronger in the first three waves than that in the last two waves.  

6. Discussion 

In the current study, the application of conventional growth curve modeling revealed that, 
there is significant difference on mean start math IRT scores between boys and girls in ECLS 
K-5 dataset, girls have significantly slower linear growth rate but faster acceleration rate in 
math achievement from kindergarten to Spring fifth. After controlling for SES, the gender 
differences reduced on the mean start math IRT scores, growth rate, and acceleration rate. 
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Growth mixture modeling applied to ECLS K-5 children reliably identified three classes of 
children based on their math growth trajectories: a slower-math development class, a 
moderate-math development class, and a faster-math development class. Growth mixture 
modeling results indicate that gender differences are different depending on different math 
development classes. Specifically, gender differences in slower-math development class are 
statistically nonsignificant on the mean start math IRT scores, linear growth rate and 
acceleration rate. In normal-math development class, gender difference is statistically 
nonsignificant on the mean start math IRT scores, but gender differences are statistically 
significant on linear growth rate and acceleration rate. In faster-math development class, 
gender difference is statistically significant on the mean start math IRT scores, but gender 
differences are statistically nonsignificant in terms of linear growth rate and acceleration rate. 
When holding SES constant, growth mixture modeling results show that gender differences 
on the mean start IRT scores, linear growth rate, and quadratic growth rate reduced in all 
subpopulations.  

 

Table 3. Selected results for three growth mixture models 

 Slow Math Development Normal Math Development Fast Math Development 

Coeff Model1 Model2 Model3 Model1 Model2 Model3 Model1 Model2 Model3

I 24.703 24.533 25.928 35.186 35.706 34.880 57.697 61.278 56.788 

S 9.142 9.170   9.675 14.409 15.070 15.174 14.929 14.349 14.881 

Q -0.213 -0.190 -0.209 -0.549 -0.603 -0.610 -0.702 -0.668 -0.705 

 

I on gender  0.076 -0.054  -1.072 -0.448  -6.934 -5.758 

S on gender  0.099 -0.076  -1.448 -1.137  -0.871  0.641

Q on gender  -0.042 -0.038   0.115  0.089   0.043 -0.038 

 

Math1 on SES1   2.748   4.572   7.122 

Math2 on SES2   4.953   2.244   4.886 

Math3 on SES3   2.643   5.770   5.832 

Math4 on SES4   7.390   6.727   3.237 

Math5 on SES5   8.760   5.685   4.007 

Note. Number in bold indicate nonsignificant; I: intercept; S: slope; Q: quadratic; SES = 
socio-economic status; boys = 0, girls = 1. 

 

Growth mixture modeling result also show that after controlling for gender, the effects of 
SES on math development are different in different subpopulations. SES is probably the most 
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widely used contextual variable in educational research. Consistent with the effect of SES on 
math achievement in the conventional growth model, the addition of SES in the growth 
mixture model reduced gender differences in all the subpopulations. Clearly, more research is 
needed to determine the effect of SES on individual academic differences in early childhood.  

With regard to performance by gender on mathematical related assessments among K-12 
students, the literature has mixture findings. Some studies found a higher achievement for 
boys (e.g., Rathbun &West, 2004; Fryer & Levitt, 2010; Penner & Paret, 2007), for girls 
(e.g.,Vermeer, Boekaerts, Seegers, 2000), and no difference between boys and girls (e.g., e.g, 
Campbell, Hombo, & Mazzeo, 2000; Cheema & Galluzzo, 2013; Hyde, Fennema, & Lamon, 
1990; Ingels & Dalton, 2008; Stoet & Geary, 2013). The current analysis only considers one 
of the important factors, social economic status, that affect children’s academic achievement, 
With the addition of some other covariates, such as time spent on the homework, parent 
education, and school type, etc. the gender differences on math growth curve would not 
necessarily hold. Therefore, the implicit gender-math stereotypes should not influence 
women’s interest and performance in math domain.  

By focusing the analysis to students who stayed in the same school from kindergarten to the 
fifth grade, there are a couple of limitations in this study. As we know low SES students are 
more likely to move, it would be interesting to see whether similar results could be hold for 
students who changed schools in the elementary years. This study sampled 2818 students 
from the whole dataset. Future study will consider incorporating sampling weight in the 
model to get more plausible estimation.  

References 

Bradley, R. H., & Corwyn, R. F. (2002). Socioeconomic status and child development. 
Annual Review of Psychology, 57, 371-399. http://dx.doi.org/10.1146/annurev.psyc 
h.53.100901.135233 

Campbell, J. R., Hombo, C. M., & Mazzeo, J. (2000). NAEP Trends in Academic Progress: 
Three Decades of Student Performance. Washington, DC: U.S. Department of Education, 
Office of Educational Research and Improvement. National Center for Education Statistics.  

Cheema, J. R., & Galluzzo, G. (2013). Analyzing the gender gap in math achievement: 
Evidence from a large-scale US sample. Research in Education, 90, 98-112. 
http://dx.doi.org/10.7227/RIE.90.1.7 

Clogg, C. C. (1995). Latent class models. In G. Arminger, C. C. Clogg, & M. E. Sobel (Eds.), 
Handbook of statistical modeling in the social and behavioral sciences (pp. 81-110). San 
Francisco: Jossey-Bass. http://dx.doi.org/10.1007/978-1-4899-1292-3_6 

Connell, A. M., & Frye, A. A. (2006). Growth mixture modeling in developmental 
psychology: Overview and demonstration of heterogeneity in developmental trajectories of 
adolescent antisocial behavior. Infant and Child Development, 15, 609-621. 
http://dx.doi.org/10.1002/icd.481 

Dawson, B. A., & Williams, S. A. (2008). The impact of language status as an acculturative 



Journal of Educational Issues 
ISSN 2377-2263 

2016, Vol. 2, No. 1 

www.macrothink.org/jei 180

stressor on internalizing and externalizing behaviors among Latino children: A longitudinal 
analysis from school entry through third grade. Youth Adolescence, 37, 399-411. 
http://dx.doi.org/10.1007/s10964-007-9233-z 

Duncan, G. J., & Magnuson, K. A. (2005). Can family socioeconomic resources account for 
racial and ethnic test scores gaps? The Future of Children, 15, 35-54. Retrieved from 
http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2006032 

Fryer, R. G., & Levitt, S. D. (2010). An empirical analysis of the gender gap in mathematics. 
American Economic Journal: Applied Economics, American Economic Association, 2(2), 
210-240. http://dx.doi.org/10.1257/app.2.2.210 

Han, W. (2008). The academic trajectories of children of immigrants and their school 
environments. Developmental Psychology, 44, 1572-1590. http://dx.doi.org/10.1037/a001 
3886 

Hong, G., & Raudenbush, S. W. (2005). Effects of kindergarten retention policy on children’s 
cognitive in reading and mathematics. Educational Evaluation and Policy Analysis, 27, 
205-224. http://dx.doi.org/10.3102/01623737027003205 

Hyde, J. S., Fennema, E., & Lamon, S. (1990). Gender differences in mathematics 
performance: A meta-analysis. Psychological Bulletin, 107, 139-155. http://dx.doi.org/10. 
1037/0033-2909.107.2.139 

Ingels, S. J., & Dalton, B. W. (2008). Trends Among High School Seniors, 1972–2004 (NCES 
2008-320). Washington, DC: National Center for Education Statistics, Institute for Education 
Sciences, U.S. Department of Education.  

Jung, T., & Wickrama, K. A. S. (2008). An introduction to latent class growth analysis and 
growth mixture modeling. Social and Personality Psychology Compass, 2, 302-317. 
http://dx.doi.org/10.1111/j.1751-9004.2007.00054.x 

Kaplan, D. (2002). Methodological advances in the analysis of individual growth with 
relevance to education policy. Peabody Journal of Education, 77, 189-215. 
http://dx.doi.org/10.1207/S15327930PJE7704_9 

Kaplan, D. (2005). Finite Mixture Dynamic Regression Modeling of Panel Data with 
Implications for Dynamic Response Analysis, Journal of Educational and Behavioral 
Statistics, 30, 169-187. http://dx.doi.org/10.3102/10769986030002169 

Lindberg, S. M., Hyde, J. S., Petersen, J. L., & Linn, M. C. (2010). New trends in gender and 
mathematics performance: A meta-analysis. Psychological Bulletin, 136(6), 1123-1135. 
http://dx.doi.org/10.1037/a0021276 

McCoach, D. B., O’Connell, A. A., & Levitt, H. (2006). The effects of ability grouping in 
kindergarten reading using the ECLS-K. Journal of Educational Research, 99, 339-345. 
http://dx.doi.org/10.3200/JOER.99.6.339-346 

Muthén, B. O. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29, 



Journal of Educational Issues 
ISSN 2377-2263 

2016, Vol. 2, No. 1 

www.macrothink.org/jei 181

81-117. http://dx.doi.org/10.2333/bhmk.29.81 

Muthén, B. O. (2003). Statistical and substantive checking in growth mixture modeling: 
Comment on Bauer and Curran. Psychological Methods, 8, 369-377. 
http://dx.doi.org/10.1037/1082-989X.8.3.369 

Muthén, L. K., & Muthén, B. O. (2001). Mplus: Statistical analysis with latent variables. Los 
Angeles: Muthén & Muthén.  

Nesselroade, J. R. (1991). Interindividual differences in intraindividual change. In L. A. 
Collins & J. L. Horn (Eds.), Best Methods for the Analysis of Change (pp. 92-106). 
Washington, DC: American Psychological Association. http://dx.doi.org/10.1037/10099-006 

Penner, A. M., & Parent, M. (2008). Gender differences in mathematic achievement: 
Exploring the early grades and the extremes. Social Science Research, 37, 239-253. 
http://dx.doi.org/10.1016/j.ssresearch.2007.06.012 

Rathbun, A., & West, J. (2004) From Kindergarten through Third Grade: Children’s 
Beginning School Experiences (NCES 2004-007). U.S. Department of Education, National 
Center for Education Statistics. Washington, DC: U.S. Government Printing Office.  

Raudenbush, S. W. (2001). Toward a coherent framework for comparing trajectories of 
individual change. In In L. M. Collins & S. A. Sayer (Eds.), New methods for the analysis of 
change: Decade of behavior (pp. 35-64). Washington, DC, US: American Psychological 
Association. http://dx.doi.org/10.1037/10409-002 

Singer, J. D., & Willet, J. B. (2003). Applied longitudinal data analysis: Modeling change 
and event occurrence. New York: Oxford University Press, Inc. 
http://dx.doi.org/10.1093/acprof:oso/9780195152968.001.0001 

Sirin, S. R. (2005). Socioeconomic status and academic achievement: A meta-analytic review 
of research. Review of Educational Research, 75, 417-453. http://dx.doi.org/10.3102/0034654 
3075003417 

Stoet, G., & Geary, D. C. (2013). Sex differences in mathematics and reading achievement are 
inversely related: Within- and across-nation assessment of 10 Years of PISA Data. PLoS ONE, 
8(3), e57988. http://dx.doi.org/10.1371/journal.pone.0057988 

Thompson, T., & Dinnel, D. L. (2007). Poor performance in Mathematics: Is there a basis for 
a self-worth explanation for women? Educational Psychology, 27, 377-399. 
http://dx.doi.org/10.1080/01443410601104197 

Tourangeau, K., Nord, C., Lê, T., Pollack, J. M., & Atkins-Burnett, S. (2006). Early 
Childhood Longitudinal Study, Kindergarten Class of 1998–99 (ECLS-K), Combined User’s 
Manual for the ECLS-K Eighth-Grade Data Files and Electronic Codebooks (NCES 
2006-032). Institute of Education Sciences, U.S. Department of Education. Washington, DC: 
National Center for Education Statistics.  

U.S. Department of Education, National Center for Education Statistics. (2000). Early 



Journal of Educational Issues 
ISSN 2377-2263 

2016, Vol. 2, No. 1 

www.macrothink.org/jei 182

Childhood Longitudinal Study, Kindergarten Class of 1998-99. Washington, DC. 

Vermeer, H. J., Noekaerts, M., & Seegers, G. (2000). Motivational and gender differences: 
Sixth-grade students’ mathematical problem-solving behavior. Journal of Educational 
Psychology, 92(2), 308-315. http://dx.doi.org/10.1037/0022-0663.92.2.308 

Xue, Y., & Meisels, S. J. (2004). Early literacy instruction and learning in kindergarten: 
Evidence from the Early Childhood Longitudinal Study: Kindergarten class of 1998-1999. 
American Educational Research Journal, 41, 191-229. 
http://dx.doi.org/10.3102/00028312041001191 

 

Appendix 

Appendix 1. Mplus Syntax for Growth Mixture Model 3 

Title: Growth Mixture Modeling with time-invariant covariate gender and time-variant 
covariate SES 

 

Data: File is GMM_4.dat; 

           Format 6f10.2, 4f10.2, f10.0; 

 

Variable: Names are C1R3MSCL C2R3MSCL C3R3MSCL C4R3MSCL C5R3MSCL 
C6R3MSCL WKSESL W1SESL W3SESL W5SESL BOY; 

 

Usevariables are C2R3MSCL C3R3MSCL C4R3MSCL C5R3MSCL C6R3MSCL WKSESL 
W1SESL W3SESL W5SESL BOY; 

 

            missing = .;  

            classes = c(3); 

 

Analysis:TYPE IS MIXTURE; 

            Estimator = ML; 

            Starts = 1000 50; 

            STITERATIONS = 50; 

 

Model: %overall% 

       i by C2R3MSCL-C6R3MSCL@1; 

       s by C2R3MSCL@0 C3R3MSCL@1 C4R3MSCL@2 C5R3MSCL@6 
C6R3MSCL@10; 

       q by C2R3MSCL@0 C3R3MSCL@1 C4R3MSCL@4 C5R3MSCL@36 
C6R3MSCL@100; 



Journal of Educational Issues 
ISSN 2377-2263 

2016, Vol. 2, No. 1 

www.macrothink.org/jei 183

 

      [C2R3MSCL-C6R3MSCL@0 i s q]; 

      i with s@0; 

      i with q@0; 

      s with q@0; 

 

      i s q on BOY; 

        C2R3MSCL on WKSESL; 

        C3R3MSCL on W1SESL; 

        C4R3MSCL on W1SESL; 

        C5R3MSCL on W3SESL; 

        C6R3MSCL on W5SESL; 

 

      %c#1% 

      [i*17.2 s*6.2 q*-0.2];  

      i s q on BOY; 

        C2R3MSCL on WKSESL; 

        C3R3MSCL on W1SESL; 

        C4R3MSCL on W1SESL; 

        C5R3MSCL on W3SESL; 

        C6R3MSCL on W5SESL; 

        C6R3MSCL@0; 

 

      %c#2% 

        [i*33.4 s*13.1 q*-0.4] ;  

        i s q on BOY; 

        C2R3MSCL on WKSESL; 

        C3R3MSCL on W1SESL; 

        C4R3MSCL on W1SESL; 

        C5R3MSCL on W3SESL; 

        C6R3MSCL on W5SESL;   

         q@0; 

   C6R3MSCL@0; 

 

      %c#3% 

        [i*50.4 s*20.1 q*-0.6];  

        i s q on BOY; 
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        C2R3MSCL on WKSESL; 

        C3R3MSCL on W1SESL; 

        C4R3MSCL on W1SESL; 

        C5R3MSCL on W3SESL; 

        C6R3MSCL on W5SESL; 

         q@0; 

   C6R3MSCL@0; 

 

Plot: Type = plot3; 

       Series = C2R3MSCL(0) C3R3MSCL(1) C4R3MSCL(2) C5R3MSCL(6) 
C6R3MSCL(10); 

 

   output: 

       tech1 tech4 tech8; 
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