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Abstract 

The famous 1968 Witsenhausen counterexample demonstrated that for a multi-agent linear 
quadratic Gaussian (LQG), the optimal linear solution is, in general sub-optimal. The 
counterexample was a chosen distributed control system (and hence a system with a 
non-classical information pattern) that was otherwise quadratic and Gaussian. For this 
system, Witsenhausen provided a nonlinear control law that outperformed the optimal 
linear control law and demonstrated that a measurable optimal control law should exist. 
The note gives an example, which is easier and more sophisticated than the Witsenhausen 
example but still allows for a convex formulation over a set of complicated constraints. 
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Introduction 

A team decision problem consists of a group of decision makers seeking to maximize a 
common objective that depends on the group’s joint decision. The difficulty associated with a 
team decision problem stems from the fact that each decision maker is making a decision 
independently in response to incomplete information. Decision makers are allowed to 
communicate their information to one another within a given information structure; however, 
such actions bear communication costs. The goal of the team decision problem is to find the 
optimal policy for the decision makers and the optimal information structure such as to 
minimize a cost function that incorporates the original objective, the available information, 
and the communication costs. One example of a team decision problem that has received a 
significant degree of research attention is the Witsenhausen counterexample (WC) (1968).  

The counterexample has inspired a large volume of engineering researches along three related 
themes. The first body of work is devoted to finding the elusive optimal control law for the 
problem. For the simplicity with which the problem is stated, it is interesting to note that the 
optimal control law is still unknown. The second theme is in refining the classification of 
distributed LQG systems into those for which affine laws are optimal, and those for which 
affine laws are not optimal. The authors consider a parametrized family of two stage 
stochastic control problems. The family includes the Witsenhausen counterexample. Bansal 
and Basar (1987) use results from information theory to arrive at the optimality result. The 
authors show that affine controls are still optimal for a deterministic variant of the 
Witsenhausen counterexample if the cost function is the induced two-norm instead of the 
expected two-norm in the stochastic variant. The third theme has been in viewing the 
counterexample as a bridge between control and communication. Mitter and Sahai (1999) 
observe that the original Witsenhausen problem is in essence a communication problem 
between the two controllers. They back up this observation by proposing control strategies 
that are explicitly based on quantization of the initial state. 

As we can see,  since Witsenhausen put forward his remarkable counterexample, there have 
been many attempts to develop efficient methods for solving the functional optimization 
problem that is non-convex (Note1). The WC is  illustrated in Figure 1 and has the 
following elements: 

_ External Signals:   x ; v; independent random variables with finite second moments. We 

assume independent Gaussian random variables, where x ~ N (0; 2σ ); v ~ N (0; 1). 

- Information (Observation): x; y   where y =   u1 + v:  

- Decision Variables: u1 = f (x);  u2  = g(y); where (f ; g) is any pair of Borel functions. 

- Cost objective: 
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                      Min   J = E  [ k2  (  u1  -   x )2  +  ( u2  -   u1 )2 ]           

(1) 

                             f, g 

 

The goal is for decision maker, DM1 one to estimate the external signal x and DM2 to 
estimate u1 which is corrupted by the noise signal v. Although the WC involves only two 
decision makers, it possesses almost all of the main difficulties inherent in any decentralized 
team decision problem. 

 

 

 

Fig. 1. Information structure of the Witsenhausen Counterexample 

In a decentralized decision making, if the flow if information to a central optimizer is less 
than complete then one has, in fact, a situation with many decision makers, who do not 
completely share information even if they share a common goal. Decentralization often leads 
effectively to a type of multi-agent situation in which the definition of the ‘players’ and the 
‘rules of the game’ are treated with some success in a dynamic (i.e. recursive) fashion (Note 
2). The WC, therefore, is essentially a team decision problem but with differing information 
(see Marachank and Radner (1972) Ho and Chu (1972), Radner (1991).  

The purpose of this note is to illustrate by way of an example that some of the most familiar 
features of the single-agent case do not survive a multi-agent quadratic Gaussian (LQG) 
problem (Note 3) and the optimum linear solution is, in general, sub-optimal. Here we shall 
give an example which is easier but more sophisticated than the Witsenhausen’s. We achieve 
a better solution than the one previously known. Moreover, we show that the learning 
approaches are simple and automated and they are easy to extend for solving general 
functional optimization problems. Our purpose is not to emphasize the connections between 
control and information theory nor our purpose is to captures the essence of the implicit 
interactions that are possible in distributed control systems (Note 4). 

2. A Simple LQG Problem and the Optimal Linear Solution 

Assume the scalar state equation 

            t
r

1j
jtt1t    u     AX     X ε++= ∑

=
+                                  (2) 
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where jtu  is the control exerted by the jth agent, based upon observation of 

  t)  s  (         X     y jssjs ≤η+= . The process   { }tε  and  r) . . 2,. 1,   j ( )( jt =η are supposed 

independent white noise processes, with M   )(  var N,    )(  var jtt =η=ε . We assume equilibrium 

behavior and the common criteria function 

                      2
j j 

2 u  Q      RX    C ∑+=                         (3) 

whose expectation is to be minimized in the stationary state. This is then a scalar regulation 
problem with many controllers. 

In view of the symmetry of the problem over agents, it seems likely (although the point 
should be proved) that the optimal controls should take a common form 

                    jt jt y  ) T (      u β=                         (4) 

where   ) T ( β is a realizable operator 

                    s

0
s T      )  T (  ∑

∞
β=β                                                    

Using the techniques given in Whittle and Rudge (1979) one finds the evaluation 

 

                  
-1-222.

 z    z   1 (  MQr   N ( )  Qr   R ( [  A    EC βθ+βθ+β+β+θ=         (5)  

where r is the number of agents and  

                   -1] ) z (  zr  -  zA  -  1 [    β=θ                           (6) 

In (6) we follow the conventions  
-21--

       ),z (   ), z (     ββ=βββ=β  etc., and the operator 

extracts the absolute term in the expansion on 1    z = . It is convenient to define D, α  by 

                   ) z (  rz  -  (z)    ) (z      ) z (  D  -1 βα=θ=                   (7) 

Theorem 
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The optimal linear operatorβ , given in terms of  -1    D θ=  by (7), is determined by the fact 

that s

0s
 s zd      D ∑

∞

=
=   is the canonical factor of 

                    
2

   v-   )   v  (4     ) z ( D
1/22

μ
+λμ

=                   (8) 

where   )  M    rN ( ) Qr     rR  (      z) ( 22 α+α+=λ  

              
) 1  -r   ( M Q     =μ

 

             1 -
0  z    z (  ) z -r (A    QM       v   ) z ( v ++=  

and 0v  is a scalar to be determined by the condition 1   d0 = . If   0   NR > then the solution for 

) z (  β  implied by (6) is rational and if and only if  0    =μ  

Proof 

One finds with some reduction that relation (4) can be rewritten 

             2
2

.2 D  -   QM  1) -r (     
D

(z)   [  A     EC r α+
λ

=  

          +  ]  
D

  -  
D

  -  1 (  )     M Q    N Qr     M Rr  ( 2
−
αα

α++           (9) 

Minimization of this expression with respect to β  is equivalent to minimization with respect 

to    , .  .  . . d  , d   21 and leads to the relation  

        v-   D      -    D   
0

-

22 - ∑
∞

=μλ ,                 (10) 

 where the sum represents a series in non-positive powers, convergent on the unit circle. The 

coefficients of sz  and sz−  are equal in the expansion of the left-hand side of (9), so that 
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the right-hand side must reduce to a constant. This constant can be absorbed into 0v  and 

therefore, taken as zero. Solving the resulting quadratic equation for 2  D  and taking the 

solution, which is positive on the unit, circle, we deduce (8). Since  1 -D    =θ  is to be both 

realizable and stable, we require D to be the canonical factor of expression (8). 

3. Remarks 

The significance of rationality of )  z ( β  is that it would indicate that the optimal control (3) 

could be generated by a finite number of simple recursive relations. This was true for the 
Kalman filter: the state estimate  X  was generated by a first-order recursion and this then 

supplied the optimal control X̂K    u = . However, for the multi-agent case there is generally 

no way of seeing things in a finitely recursive manner. One can explain this in terms of the 
need for agents to try and understand what other agents are observing and doing. So, one has 
not only to construct one’s estimate of state, but also one’s own estimate of other’s estimates, 
one’s estimates of other’s  estimates of estimates., etc. This infinite regress implies 
infinite-order recursions. 

One returns to finiteness in the case QMR (r – 1) = 0. i. e,  when either  r = 1 ( the 
single-agent case) or when M = 0  ( communality of information means that one is 
effectively back to the single-agent case) or when Q = 0 ( and, control being unpenalized, 
agents try to reduce the state variable to zero at every stage). 

4. Conclusion 

The WC is a simple example of a linear-quadratic-Gaussian team problem. Before 
Witsenhausen put forth this counterexample, it was conjectured that in any LQG team 
problem the optimal controllers are linear. Witsenhausen proved that the WC has an optimal 
solution that is not of the linear type.  Thus, he claimed that the conjecture is not necessarily 
true if the information pattern is not classical, i.e., the information available in earlier 
decision makers is not available to latter decision makers.  Since then, many researchers 
have focused on understanding the role of information structures in team decision problems 
and on developing more efficient methods to find improved solutions for the WC. The work 
in this paper belongs to the second kind. This note gives an example, which is much easier, 
but more sophisticated than the Witsenhausen example but still allows us for a convex 
formulation of the problem over a set of complicated constraints.  
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Notes 

Note 1. Witsenhausen proved that the optimal controller for the WC have these properties. (i) 

if ∫ is optimal then  E [ ∫ (x) ] = 0, E [ ∫ ( x )2 ] ≤  4 2σ  (ii)  given a fixed ∫(x) having zero 

means and variance not exceeding  4 2σ , the optimal choice for g (.) is given by  

] (x)  -y  ( (E
)] (x)   - (y)  (x)  [  E

   ]y  (x) [ E    (y) g
x

x
∫φ

∫φ∫
=∫=•  
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where  (.) φ is the standard Gaussian density. The corresponding pay-off function 

 is 

⎡ ⎤ )D (   -   1   x)(   -x   E k    )g , ( J  )  (J 22**
∫∫ ∫+∫=∫=∫ where     )D ( I =∫ ∫

 (y) D
dy)]y(D  

dy
d [   2

∫
∫  

which is called the ‘ Fisher Information’ of the random variable y with density  (y) D ∫ being 

    )y(D =∫ ∫ dx  )   0,  ; x (   ) (x)   -y   ( 2δφ∫φ  

Note 2. Recently some have even started formulating the WC as a potential game and using 
the learning approach fading memory. One approach to formulating the WC as a potential 
game has been to model it as a game between the two decision makers where the actions 
available to each decision maker are the set of possible control laws. This approach leads to 
some challenges since the cardinality of each action set is infinite. Others, for example (Na, 
Marden and Shamma (2009), Bagchi and Basar (1980) formulate this WC as a potential 
game in an alternative fashion. He used n-step functions for f(x) and modeled each interval 
as a player and the value taken by each interval as the player’s action. The number of 
players and the size of action sets were determined by the way of discretizing the problem. 

Note 3. The WC is a simple example of a linear-quadratic-Gaussian (LQG) team problem [9]. 
Before Witsenhausen put forth this counterexample, it was conjectured that in any LQG team 
problem the optimal controllers are linear. Witsenhausen proved that for any k > 0, the WC 
has an optimal solution that is not necessarily of the linear type 

Note 4. When engineers and physicists take an information-theoretic view, they get  inspired 
by the "cognitive radio channel" and deterministic channel models that lead directly to an 
asymptotically infinite-dimensional version of the counterexample for which new upper and 
lower bounds reveal that it is always possible to achieve within a factor of two of the optimal 
cost. The results are then pulled back to the finite dimensional case using our "Platonic 
perspective" on sphere-packing bounds to get a similar factor of eight approximate optimality 
result for Witsenhausen's original scalar counterexample. 

 

 


