
 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 33

Network schemes for TCP elastic traffic in the Internet

Lluís Fàbrega, Teodor Jové

Institute of Informatics and Applications (IIiA)

Campus Montilivi, University of Girona, 17071 Girona, Spain

Tel: +34 972418889 E-mail: { lluis.fabrega, teodor.jove }@udg.edu

Received: May 20, 2013 Accepted: October 24, 2013 Published: October 31, 2013

DOI: 10.5296/npa.v5i3.3728 URL: http://dx.doi.org/10.5296/npa.v5i3.3728

Abstract

TCP elastic traffic is generated by the traditional “data” applications in the Internet, such as

web browsing, peer-to-peer file sharing, ftp, e-mail and other. These applications are built on

top of TCP, which provides reliable transfers and adjusts the sending rate to the network

conditions to achieve the maximum possible throughput, a feature that makes TCP flows to

be called “elastic”. From the point of view of the network, TCP elastic traffic requires the

maximum possible throughput above a minimum value, a network service that we call the

Minimum Throughput Service (MTS). In this paper we survey the main network schemes

that have been proposed in the Internet to provide this service for TCP elastic traffic,

classified in two broad groups, the ones that do not use Admission Control (AC) and the ones

that do use it. For each network scheme we describe the main characteristics of the service

(whether the minimum throughput can be different or is the same for all flows, whether

isolation among flows is provided, etc.) and their architecture (the specific traffic

conditioning, queue disciplines and AC mechanisms used, the required state, the use of

signaling, etc.).

Keywords: TCP; elastic traffic; quality of service; admission control; minimum throughput

service.

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 34

1. Introduction

The traditional “data” applications in the Internet (web browsing, peer-to-peer file

sharing, ftp, e-mail and others) transfer discrete messages or “documents” (a web request, a

basic web file, an embedded image, an ftp file, an ftp command, etc.), which are partitioned

into blocks and sent through the network into a sequence of packets or “flows” within TCP

connections [1, 2, 3]. The users of these applications expect that there is no error in the

transfer of documents and also that the response time is the smallest possible below a certain

maximum value [4]. Consequently, document transfers require reliability and the maximum

possible rate above a minimum value. Therefore TCP flows generated by these applications

are satisfactorily supported by a network service that provides a minimum throughput to the

flow and if possible, an extra throughput. We will call this network service the Minimum

Throughput Service (MTS).

A network service is provided by a network scheme, which is composed of a

combination of resource provisioning (link’s capacity, queues, etc.) and mechanisms of

management, routing, Admission Control (AC), traffic conditioning and queue disciplines.

Different network schemes have been proposed in the Internet to provide the MTS for TCP

elastic traffic. For example, the traditional network scheme in the Internet is simply based

only on First-In-First-Out (FIFO) and Tail Drop queues, there is neither traffic conditioning

nor AC mechanisms, and provisioning can be whatever. The strength of this scheme is the

simplicity. However it does not provide isolation (or protection) between flows, i.e., flows

sending at a higher rate than the fair throughput can damage other well-behaved flows.

Isolation could be provided using other queue disciplines and/or adding traffic conditioning

mechanisms, but at the cost of complicating the network scheme. Moreover, in the traditional

network scheme, when resources in the followed network path are enough to satisfy the

minimum throughput requirements of all flows, all of them are satisfied, but otherwise, i.e.,

during congestion situations, none of them is satisfied (it is said that this scheme provides the

best-effort service, a service with no absolute guarantees). Congestion situations can be

reduced by increasing network resources or by optimizing their use through better routing

techniques. If the network resources are over-provisioned so that congestion never or rarely

occurs, then this scheme always provides the desired minimum throughput to all flows (it

provides a service with absolute guarantees to all flows). Over-provisioning the network

resources is a common practice in backbone networks, since it allows simple network

schemes to be used. However, over-provisioning can be difficult to achieve since unexpected

events may happen (inaccurate traffic forecasts, routing changes, link or router failures, etc.),

and it can be very inefficient in using resources. If more efficient provisioning is desired,

another possible option is using network schemes that include an AC mechanism. By using

AC, when resources in the followed path are enough to satisfy the minimum throughput

requirements of all flows, all of them are satisfied, and otherwise, i.e., during congestion

situations, some of them receive the desired minimum throughput (they are “accepted”) and

the rest do not (they are “rejected” or “blocked”). Again, congestion situations can be reduced

by increasing network resources or by optimizing their use through better routing techniques,

but if congestion still occurs, AC achieves efficient use of resources by maximizing the

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 35

number of satisfied flows. However, using AC complicates the network scheme, and

therefore a major concern is making the AC as simple as possible.

In this paper we survey the main network schemes that have been proposed in the

Internet to provide the MTS for TCP elastic traffic, classified in two broad groups, the ones

that do not use AC and the ones that do use it. For each network scheme we describe the main

characteristics of the service (whether the minimum throughput can be different or is the

same for all flows, whether isolation among flows is provided, etc.) and their architecture (the

specific traffic conditioning, queue disciplines and AC mechanisms used, the required state,

the use of signaling, etc.). The paper is organized as follows. In Section 2 we describe in

detail the characteristics of TCP elastic traffic. Then in Section 3 we review the network

schemes for TCP elastic traffic without AC, and in Section 4, the ones with AC. Finally, in

Section 5, we present the conclusions.

2. TCP elastic traffic

In this section we deal with TCP elastic traffic. Firstly, we discuss the Quality of Service

(QoS) requirements of “data” applications, starting from the application QoS (i.e., the

description of the application performance) and then the network QoS (i.e., the description of

the network performance). Then we give a general definition of the MTS, the network service

for TCP elastic flows. After that we review the two important functions of TCP: reliability

through packet retransmission and resource sharing through rate-adaptive algorithms. Finally,

we describe the characteristics of TCP elastic traffic at different levels, as seen as a set of

sessions, documents, packets and flows.

2.1 QoS for elastic traffic

In “data” applications, the application’s processes transfer discrete (time-independent)

messages or “documents” (a web request, a basic web file, an embedded image, an ftp file, an

ftp command, a typed character in telnet, an e-mail message, etc.). The QoS at the application

layer is described in terms of fidelity to the original documents and in terms of interactivity or

response time (see Fig. 1). Fidelity refers to the errors in the transferred documents, while the

definition of the response time varies depending on the application. For example, on the web,

the response time may be defined as the waiting time between requesting a page (user “click”)

and visualizing it, which includes the transfer of several documents (the initial request, the

basic web file, the rest of the requests, some embedded images, etc.); in ftp, the response time

may be defined as the waiting time between commands and status messages, and especially

between a file request command and the end of the file transfer; in telnet, the response time

may be the time between when a character is typed at the client and the visualization of the

corresponding echo sent by the server. In general, the response time is composed of the

transfer times of documents and the processing time by the application’s processes (e.g., a

web server).

Specifically, users of these applications expect no errors in the transfer of documents, i.e.,

absolute fidelity. Moreover, the smaller the response time the more satisfied the user, but

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 36

when the response time is too long, impatient users or high layer protocols may interrupt the

transfer [4]. These aborted transfers imply a waste of resources, which can get even worse if

the transfer is tried again. This means that there is a maximum response time. Its value

depends on users’ desires and the specific application. For example (see [5] and references

therein), a typical user browsing small web pages expects a maximum response time of a few

seconds (e.g., 5 s); in ftp, where files are typically larger, the maximum response times are

also larger, and users would be willing to wait in proportion to the file size; or in telnet, the

echo delays should be smaller than 150 ms. Moreover, some demanding users can want better

performance than others, e.g., users using the web for business applications (e-commerce,

online trading, etc.) may require smaller maximum response times than users browsing the

web for a “normal” use. In conclusion, the users of these applications expect that there is no

error in the transfer of documents and also that the response time is the smallest possible

below a certain maximum value.

x

t

t

ack packets

data packets

ttS

doc

t

doc

tD

APPLICATION QoS

no error

smallest possible response

time, below a maximum

average

sending rate

data packets

0 0

data packets

t

TCP

flow

average

receiving rate

(throughput)

t

doc transfer time = tD - tS

NETWORK QoS

maximum possible throughput,

above a minimum

Figure 1. Application QoS and network QoS in elastic applications.

For transferring an individual document, the above requirements imply that there should

be no error and the smallest possible transfer time below a maximum value (see Fig. 1).

Then:

 Absolute fidelity can be achieved through packet retransmission procedures, as in

TCP. The TCP source divides the document into blocks (for small documents a single

block may be enough) and sends a sequence of packets at a certain sending rate,

which the network delivers to the destination occasionally with delays and some

losses. From the acknowledgment packets sent back by the destination, the source

detects and retransmits lost packets until the whole document is received correctly.

Packet retransmission increases the packet delay and consequently the document

transfer time, and moreover, it may cause duplication of packets, which are discarded

by the destination. From the point of view of the network, the decisive QoS parameter

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 37

is the average receiving rate (averaged in some time interval) or network throughput,

which includes the duplicates. From the point of view of the application, the average

receiving rate without including the duplicates (and without the TCP header overhead)

is more important, known as goodput. The goodput, if averaged in a period equal to

the transfer time, is simply the document size divided by the transfer time.

 From the point of view of the network, the requirement about the document transfer

time turns into a requirement about the throughput, i.e., the document transfer should

achieve the maximum possible throughput above a minimum value. Note that the

traditional view is different since the minimum throughput requirement is not

considered. Traditionally, the utility curve of these applications, which relates user’s

satisfaction to throughput, is considered to be strictly positive and concave [6]. This

means that users always benefit by any increase in throughput (i.e., any reduction in

the document transfer time) but also that users tolerate throughputs tending to zero

(i.e., unlimited document transfer times). However, because users expect a maximum

response time, a maximum document transfer time is required, and therefore, a

minimum throughput is required. In conclusion, the requirement of the smallest

possible document transfer time below a maximum value implies that the network

should provide a minimum throughput and if possible, an extra throughput, and also

that the source should be able to use it, as in TCP. TCP sources use rate-adaptive

algorithms to achieve the maximum possible throughput while sharing network

resources fairly between all TCP flows [7]. Since the maximum possible throughput

changes over time, TCP increases and decreases the sending rate in order to match

these variations and minimize packet loss. Due to this ability of adjusting the sending

rate to different network conditions, “data” applications and TCP flows are called

“elastic”.

2.2 The Minimum Throughput Service (MTS)

Elastic flows require the maximum possible throughput above a minimum value from the

network. Therefore, they are satisfactorily supported by a network service that provides a

minimum throughput to the flow and if possible, an extra throughput, which we call the

Minimum Throughput Service (MTS).

The input traffic profile of the service is defined by an average sending rate equal to the

desired minimum throughput. Flows’ packets can be considered to be in-profile or out-profile

by comparing the actual average sending rate of the flow and this input traffic profile (see Fig.

2). Then:

 In-profile packets are delivered, i.e., they have no loss (there are no requirements on

packet delay). This results in the minimum throughput.

 Out-profile packets can be delivered, i.e., they can have some loss. This depends on

the remaining network resources, that is, the ones that are not used by the in-profile

traffic of flows. These remaining network resources are shared between competing

flows according to a defined sharing policy, e.g., using best-effort sharing, equal or

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 38

weighted sharing, giving priority to short flows over long flows, or other. This results

in the extra throughput.

Finally, the delivery of the service from the provider to the user (and end-user or a

neighboring domain) should be defined in a Service Level Agreement (SLA).

throughput

t

t

TCP flow

average sending

rate

t

t

out-profile packets possible loss extra throughput

in-profile packets no loss minimum throughput

minimum

throughput

x

minimum

throughput

Figure 2. The definition of the Minimum Throughput Service.

2.3 Reliability and resource sharing in TCP

TCP is a transport protocol that provides a connection-oriented, reliable and ordered

service to the application layer, besides performing multiplexing of traffic from different

application’s processes through the ports. The protocol is standardized in [1] but a large

number of other RFCs deal with different aspects of TCP. In this subsection we review the

two important functions of TCP, reliability and resource sharing.

2.3.1 Reliable delivery in TCP

The following is a summary of how TCP provides a reliable delivery [1, 2]:

 Application data is partitioned by the source in blocks of at most MSS (Maximum

Segment Size) bytes and sent into TCP packets, which carry the (per-byte) sequence

number of the first byte of the block.

 The destination only notifies correctly received packets, by sending back

Acknowledgment (ACK) packets. ACKs are “cumulative”, i.e., they indicate the

correct reception of all bytes before the carried (per-byte) sequence number (which is

the sequence number of the next expected byte). If an out-of-order packet arrives, a

duplicated ACK is sent, and if an in-order packet arrives, the ACK sending may be

delayed (but one ACK should be sent for at least every second packet arrival and no

later than 500 ms after the first arrival [8]). Selective ACKs (SACK), which indicate

non-contiguous blocks of consecutive bytes correctly received, have also been defined

[9, 10].

 TCP uses pipelining together with the sliding window mechanism for flow control.

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 39

This combination allows the source to have multiple sent but yet-to-be-acknowledged

packets, with a limit equal to the size of the window (new packets are allowed to be

sent when ACKs corresponding to previously sent packets are received). The size of

the window is the number of bytes the destination can accommodate in its receive

buffer (it is called the receiver’s advertised window), and it is notified at the source

through ACK packets. Typically the resulting traffic is very bursty since the source

sends a number of packets continuously (a burst) according to the window and then

stops and waits for the ACKs before going on.

 There is a timeout-based mechanism at the source to detect the situations in which no

ACK is received for a particular packet. When a packet is sent, a timer is initialized to

a time called retransmit timeout (RTO).

 A packet is considered to be lost when the corresponding ACK is not received within

the RTO (RTO expiration), or when three duplicated ACKs of a previous ACK are

received (this second procedure is called “Fast Retransmit” [11]). A third possible loss

indication comes from the SACK information, if it is used.

 When the loss of a packet is detected, a retransmission procedure is triggered.

Depending on the actual state, only the lost packet is retransmitted (“selective repeat”

style), or the lost packet and the next packets in the actual window (“go-back-N”

style). Packet retransmissions can cause duplicated packets that are discarded by the

destination.

It is worth commenting the following about the RTO expiration and the Fast Retransmit

procedure, the two traditional indications of packet loss:

 RTO should be longer than the round-trip time (RTT) of packets to allow for ACK

arrivals, but not too much so as not to delay retransmissions. RTT can be measured

but, since RTT changes in time, it is difficult to estimate its actual “right” value (and

consequently the “right” RTO). Since it is desired that the timer expires early only on

rare occasions, RTO is obtained through a conservative calculation based on the

average and deviation values of measured RTTs [12] (moreover, before the first RTT

measurement has been made, RTO is set to a value of 3 s). On the other hand, the

timer is initialized with the actual RTO when a packet is sent or retransmitted. Usually

there is a single timer related to the oldest unacknowledged packet, and when this

packet is acknowledged, the timer is reinitialized (with the actual RTO) for the next

unacknowledged packet. If the timer expires, the actual RTO is doubled (“exponential

back off”) and the timer is reinitialized. Moreover, TCP implementations use coarse

grain clocks to measure the RTT and trigger the RTO. This limits the precision of all

these procedures and imposes a large minimum value on RTO. Moreover RFC 2988

[12] states, again in a conservative approach to avoid early retransmissions, that

whenever RTO is computed, if it is less than 1 second then the RTO should be

rounded up to 1 second. The conclusion is that RTO expiration may take a relatively

long time.

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 40

 The Fast Retransmit procedure [11] is expected to detect a packet loss before RTO

expiration, ideally after a time of about one RTT (sometimes a few RTT), so

retransmissions are faster. However, since three duplicated ACKs are required, at least

three later packets have to be sent and correctly received at the destination, and

therefore, when the window is small, a late RTO expiration is more likely to occur.

2.3.2 Resource sharing in TCP

Besides the reliability function we have just described above, another important function

of TCP is to achieve the maximum possible throughput while sharing network resources

between TCP flows. This is the reason why TCP sources use rate-adaptive algorithms.

Resource sharing between TCP flows has the general goal of using the resources fully

while maintaining a certain “fairness” in the allocations to flows. Fairness can be defined in

different ways, such as max-min fairness, proportional fairness and other (see [13] for a

discussion), leading to different allocations. For example, according to the classical fairness

notion, the so-called max-min fairness, in a simple scenario of N flows sharing a single link

of capacity C, the fair rate for each flow is equal to C/N. In the case of any network topology,

this does not simply mean allocating the same share to each flow in a link-by-link basis, since

this may not lead to full utilization. Then [14]:

 Max-min fairness is achieved when the rates allocated to flows are made as equal and

large as possible, or more formally, when an increase in any allocated rate is at the

cost of a decrease in some already smaller rate.

 Or alternatively, when each flow has a “bottleneck” link, i.e., a link that is fully

utilized, and where the flow’s allocated rate is equal to or larger than the rates

allocated to the rest of the flows using this link.

Another notion of fairness consists in minimizing the number of actual flows by giving

priority to short flows over long flows. This has been shown to reduce the transfer time of

short documents without hurting the performance for long flows, when considering heavy

tailed document size distributions [15, 16].

Another point apart from the fairness type is that the fair rate of a flow changes during its

lifetime. This is because the number of flows in the network changes in time, due to new

arrivals and departures of finished transfers. Therefore, the average allocated rate of a flow

(and the corresponding document transfer time) depends on two issues, the type of fairness

and the variations in the number of flows [15].

The fair rate is not explicitly indicated to TCP sources. Instead sources use a probing

method that reacts according to binary indications from the network, i.e., whether the sending

rate is below the fair rate (“no congestion”) or the opposite (“congestion”). The classical

congestion indication is packet loss. TCP sources use rate-adaptive algorithms (called

congestion control algorithms) that increase the sending rate while there is no congestion, and

decrease the sending rate when congestion occurs, oscillating around the fair rate (and

adapting to changes in its value). The amplitude of the oscillations (which should be limited

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 41

to avoid inefficiencies in link utilization) as well as the rate of convergence and adaptation to

changes (packet loss should be minimized to reduce retransmissions) depend on the specific

rate-adaptive algorithms. Moreover, the network does not enforce the fair rate on the TCP

flow, and therefore the fairness in resource sharing is achieved relying on all TCP sources

implementing the same algorithms. As a consequence, the type of fairness also depends on

the specific algorithms used by all sources [13].

As mentioned above, the classical congestion indication from the network is packet loss,

but others are possible. The following is a more complete summary of possible congestion

indications:

 Packet loss detected from Fast Retransmit. This is considered a fast detection method.

It does not work well when the window size is small.

 Packet loss detected from RTO expiration. It may take a relatively long time in

comparison to Fast Retransmit. This is considered to be an indication of severe

congestion, because it means that Fast Retransmit has not detected the packet loss

before.

 Packet loss detected from SACK information.

 An increase in RTT. Before queues overflow (and packets are dropped), the RTT of

packets increases, and this can be used by TCP sources to react in advance and reduce

losses, with the consequent improvement in performance.

 Explicit Congestion Notification (ECN). With ECN [17], routers can provide an

explicit binary indication of congestion to end-nodes before packet loss occurs. Two

bits in the IP header are used: one for indicating the congestion and another for

indicating the ECN capability. By using Active Queue Management mechanisms such

as Random Early Detection (RED) [18], routers set the congestion indication bit in

packets when the queue occupancy is high enough but before the queue overflows

(and a packet has to be dropped). TCP uses ECN in the following way: when the

destination TCP receives a packet with the congestion indication bit set, it echoes

back this bit (through one dedicated flag of the TCP header) in its next ACK to the

TCP source, which then reacts to congestion as if a single packet loss had occurred.

With ECN, TCP performance improves because losses are reduced.

TCP sources vary the sending rate by controlling the window size, because the average

sending rate (in RTT) is roughly equal to the window size divided by RTT (this comes from

considering that TCP sends a burst of packets limited by the window size and then waits for

ACKs before going on, which arrive after one RTT). This results in the so called congestion

window (cwnd), which vary according to the TCP congestion control algorithms. The flow

control’s window is then the minimum value between the congestion window and the

receiver’s advertised window (i.e., it can vary from 1 (MSS) to the actual receiver’s

advertised window).

TCP congestion control algorithms have evolved over time, resulting in the so-called

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 42

“TCP versions” (see [2] for a general view). The first one, TCP Tahoe [7], defined the

following mechanisms for increasing the congestion window (later standardized in [11]):

 Slow Start. The congestion window is set to a small value (less than or equal to 2

(MSS), typically 1), and then it is increased by 1 (MSS) after each new (i.e.,

non-duplicated) ACK is received (cwnd = cwnd+1). If the receiver acknowledges

every packet, cwnd is doubled each RTT (a multiplicative increase by 2). When the

congestion window reaches a value called “Slow Start threshold” (ssthresh), it

continues increasing according to Congestion Avoidance.

 Congestion Avoidance. The congestion window is increased as cwnd =

cwnd+(MSS·MSS)/cwnd, after each new ACK is received. If the receiver

acknowledges every packet, cwnd is increased by approximately 1 (MSS) every time

a full window is acknowledged, i.e., it is increased by 1 (MSS) each RTT (an additive

increase by 1).

When a packet loss is detected, through Fast Retransmit or RTO expiration, cwnd is set

to 1 (MSS), entering Slow Start, and ssthresh is set to FlightSize/2 (but no less than 2 MSS),

where FlightSize is the amount of data that has been sent but not yet acknowledged. A

“go-back-N” retransmission procedure is used. Therefore, TCP Tahoe starts from “one” and

performs fast probing through Slow Start and slow probing through Congestion Avoidance.

When a packet loss is detected, it starts again from “one”, and ssthresh (which initially can be

arbitrarily large, e.g., the receiver’s advertised window) is adjusted dynamically so that the

next slow probing is performed as the congestion window is near the value at which a loss

previously occurred. Note also that if delayed ACKs are used, the congestion window is

increased at a lower rate since less ACKs are sent.

The second version, TCP Reno [11], differs from the first one only in terms of its

behavior after a Fast Retransmit, which is considered an indication of moderate congestion.

The Fast Recovery algorithm was introduced:

 When a packet loss is detected through Fast Retransmit, ssthresh is set to FlightSize/2

(but no less than 2 MSS), and cwnd is set to ssthresh+3. The lost packet is

retransmitted, and if allowed by the congestion window, new packets are sent (i.e.,

“selective repeat” style). For each additional duplicated ACK, cwnd is increased by 1

(MSS). When a new ACK is received, cwnd is set to the actual ssthresh (i.e., the

previous FlightSize/2, a multiplicative decrease by 2), and it enters Congestion

Avoidance.

However, it was shown that this procedure, by requiring every packet loss to be

retransmitted strictly based on Fast Retransmit, may fail to recover from multiple losses in a

single flight of packets, which leads to RTO expiration for the other lost packets. An

improvement of Fast Recovery was introduced in a new version, TCP NewReno [19], which

was extensively used. Basically, during Fast Recovery, “partial” ACKs (new ACKs not

covering the highest sequence number sent) and “full” ACKs are distinguished: if a partial

ACK is received, the next corresponding packet is considered to be lost and retransmitted,

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 43

and if a “full” ACK is received, then Fast Recovery ends. Another way of dealing with the

problem of multiple losses in a single flight of packets is using the SACK option, since its

information can be used to selectively retransmit the lost packets. A modified TCP Reno with

SACK was shown to outperform TCP NewReno in [20], especially when the number of

losses is large. The SACK option is widely deployed and straightforward implementations

have been proposed [21].

We have just seen above the classical increases and decreases of the TCP sending rate to

achieve the fair rate (see Fig. 3): when losses do not occur and when in Congestion

Avoidance, the congestion window is additively increased by one (cwnd+1) each RTT, and

when losses occur and are detected through Fast Retransmit and recovered through Fast

Recovery, the congestion window is multiplicatively decreased by two (cwnd/2). This is

known as a particular case of the more general “Additive Increase and Multiplicative

Decrease (AIMD)” control behavior.

time (RTT)

c
w

n
d

x packet loss

ssthresh1

ssthresh2

ssthresh3

x x x x

x x x x

Figure 3. The ideal AIMD (Additive Increase Multiplicative Decrease) behavior of the TCP congestion window,

after an initial Slow Start phase.

AIMD was studied in a single link in [22], which showed that it converges to fair

resource sharing. Although it is often stated that AIMD rate variations provide max-min

fairness in a general network, some authors (e.g., [13]) shown that they tend to provide rather

another type of fairness called “proportional fairness” (which produces smaller allocations for

flows passing through more hops to the advantage of greater overall throughput). Moreover,

fairness in resource sharing between TCP flows depends strongly on the RTT and time

duration of flows:

 Flows with large RTT achieve smaller throughput than flows with small RTT. This is

because the value of the additive increase of the sending rate (the congestion window)

is constant and independent of RTT, and it does not occur at fixed time intervals but in

time periods of RTT due to the necessary feedback delay [23]. Therefore, the sending

rate increases more quickly for flows with a smaller RTT, and achieves higher

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 44

throughput. This happens with long flows, which are stable in Congestion Avoidance

under AIMD control.

 Short flows tend to achieve smaller throughput than long flows. This is because short

flows spend most of their lifetime in Slow Start, while long flows spend most of their

lifetime in Congestion Avoidance, and flows in the Slow Start phase achieve smaller

throughput than flows in the Congestion Avoidance phase. Firstly, flows during Slow

Start double the sending rate each RTT (until a loss is detected), but meanwhile they

achieve a lower throughput since it is necessary to start conservative from a small

value. Secondly, during Slow Start the congestion window may be small, and if losses

occur it is probable that they will be detected through RTO expiration and not through

Fast Retransmit (as it has been observed in measurements, e.g., in [24]). The

expiration may take a long time (RTO is usually large, since there are just a few

samples of RTT at the beginning, a conservatively value is used), and moreover, the

congestion window is severely decreased due to starting again from a small value in

Slow Start. Thirdly, flows in Congestion Avoidance have larger congestion window

and are less sensitive to losses (usually detected through Fast Retransmit), and are

stable under AIMD control around the fair rate.

Finally it is worth commenting that the evolution of the TCP congestion control

algorithms does not end with the classical algorithms we have seen above, and that there have

been many other modifications and proposals for “new” TCPs in order to improve its

performance (adding ECN to IP [17], using Active Queue Management such as RED [18],

TCP Vegas [25], Fast TCP [26], TCP Westwood [27], XCP [28], TCP pacing schemes [29],

TCP ACK pacing schemes [30], HighSpeed TCP [31], scalable TCP [32], BIC-TCP [33],

Compound TCP [34], TCP in wireless networks [35], etc.; a performance comparison can be

found in [36], and numerous references in [37]).

2.4 Characteristics of TCP elastic traffic

Traditional “data” applications in the Internet generate the majority of Internet traffic.

Their traffic can be described at different levels by considering different entities as a set of

sessions, documents, packets and flows. The notion of session generally refers to a time

period of “continuous” and “related” user activity, so that user sessions can be considered

statistically independent. A session has a starting time and duration, and is composed of a

succession of documents. Documents are generated within a session, and are characterized by

its sending time and its size. Each document results in a sequence of packets, each packet is

characterized by its sending time and length. A flow is a sequence of “related” packets that

are “close” in time, which can correspond to the transfer of a single document, several

documents or an entire session. It is characterized by its starting time, duration, traffic

parameters such as the average rate, peak rate, etc., document size, and others. The sequence

of packets corresponding to a document transfer (which includes the retransmitted packets) is

typically very bursty (the TCP source sends a number of packets continuously – a burst –

according to the actual window and then stops and waits for the ACKs before going on) and

has a variable average rate (due to the TCP rate-adaptive algorithms). Moreover, besides data

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 45

packets, control packets for connection management and error correction are also sent.

The structure of sessions, in terms of documents, their interarrival times and sizes, and

the TCP connections used, depends on the application. The following is a qualitative

description of some applications:

 During a web session in a server, the user downloads a set of web pages, each

composed of several parts called “objects”, usually a “basic” file and several

embedded images (referenced in the basic file). A user “click” results in the basic file

being requested, and once it is received, the client requests the rest of the objects of

the web page. A TCP connection can be of two types, a “non-persistent” connection,

when it is closed by the server after finishing the transfer of an object, or a

“persistent” connection, when it remains open and is closed by the client or the server

usually when there is inactivity during a given timeout interval. The set of documents

may be transferred within several non-persistent TCP connections (one connection per

document, opened sequentially or in parallel), or within a single or several persistent

TCP connections (each one with sequential pairs of request-reply, or with “pipelined”

requests, that is, several requests one after the other without waiting for each reply).

The size of web requests usually fits in a single TCP packet, while the size of replies

is extremely variable, since they can range from small basic files to very large files.

The web also creates document interarrival times that are very variable. For example,

very short interarrival times occur when clients open parallel TCP connections to

transfer several embedded images of a web page; short interarrival times come from

users browsing and reading different web pages; users taking a long break results in

long interarrival times.

 During an ftp session, the commands sent by the client and the corresponding status

messages from the server are transferred within a single TCP connection (for

“control”). A separate TCP connection (for “data”) is established each time the user

wants to transfer some data, for example, listing a directory or getting a file (two

operations that usually occur close in time). Control commands are small, while the

size of the files is extremely variable.

 During a telnet session, there is a single TCP connection, in which each character

being typed by the user at the client is sent to the server, which echoes them back, as

well as sending the responses to the commands. The size of the typed characters is

obviously very small and their interarrival times are limited by the typing speed of the

user.

Measuring traffic at the session or flow level may be difficult because, as we have just

seen, the relation between these traffic entities and TCP connections is not obvious. In some

cases (e.g., in ftp or telnet), a session can be simply equated to an entire single TCP

connection, initiated by the connection request packets and ended by the corresponding

release packets. On other occasions (e.g., in web), a session may include several and related

TCP connections (persistent or non-persistent) and considered to be finished when there is no

user activity during a given timeout period. Similarly, a flow can correspond to a sequence of

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 46

packets within a single TCP connection, within several connections or an entire TCP

connection. Usually a flow is identified by a 5-tuple in IPv4 (protocol, source and destination

IP addresses and ports), initiated when the first packet arrives and finished when there are no

more packets during a given timeout period. Another option is to equate a flow to an entire

TCP connection.

Files sizes in the web have shown to exhibit a distribution with a heavy tail [38]. This

means that there is a high variability in sizes, and that most web files are small but a few of

them are very large (and consequently, the same is valid for the lifetime of flows, when each

one corresponds to a single file: most of the flows are short and a few of them are very long).

A reasonable fit to the form of the heavy tail is provided by the Pareto distribution.

3. Network schemes for TCP elastic traffic without admission control

In this section we review the main network schemes that have been proposed in the

Internet to provide a network service for TCP elastic traffic, when the mechanisms used are

basically traffic conditioning and/or queue disciplines, and AC is not considered. In

consequence, when resources in the followed network path are enough to satisfy the

minimum throughput requirements of all flows, all of them are satisfied; otherwise, i.e.,

during congestion situations, none of them is satisfied. We say that the network service has a

relative guarantee, since the throughput received by a flow is defined as a function of the

throughput received by other flows. For example, in a fair throughput service, the goal is to

provide a throughput equal to the fair rate of the bottleneck link, i.e., the link’s capacity

divided by the number of present flows (in fact, the max-min fairness, see Subsection 2.3); or

in the weighted version, the proportional throughput service, flows’ throughputs and flows’

weights are proportional, and therefore different throughputs can be provided. Congestion

situations can be reduced by increasing network resources or by optimizing their use through

better routing techniques. If the network resources are over-provisioned so that congestion

never or rarely occurs, then these schemes always provide the desired minimum throughput

to all flows (they provide a service with absolute guarantees to all flows).

A possible scheme would be using Fair Queuing (FQ) or Weighted Fair Queuing (WFQ)

scheduling at flow level in all routers. With FQ each flow would receive the max-min fair

rate, while with WFQ they would receive the weighted max-min fair rate (and therefore

throughput differentiation according to flows’ weights). Isolation between flows would be

provided by queues without needing specific traffic conditioning mechanisms. However, this

scheme would be too complex because it would require per-flow state and per-flow

management in all routers. For each arriving packet, the router would need to classify the

packet into a flow, update some per-flow variables and perform per-flow operations. Per-flow

state should be established and updated explicitly through per-flow signaling (this would

result in a high overhead given that most elastic flows are short – see Subsection 2.4), or

implicitly through flows’ data packets and timeout procedures.

In the next subsections we review the following set of schemes for TCP elastic traffic

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 47

without AC (see Fig. 4): the “traditional” scheme in the Internet with FIFO and Tail Drop

queues, a set of schemes based on packet classes, the scheme based on Core-stateless Fair

Queuing and finally the User-Share Differentiation scheme. For each of them, we describe

the main characteristics of the service, that is, whether they provide the same or different

throughputs, and whether they provide isolation between flows (so that flows sending more

traffic than their allocated throughput do not damage well-behaved flows that do send

according to their allocated throughput), and also the architecture of the scheme, that is, the

specific mechanisms used, the required state and the use of signaling.

without AC

with AC

throughput service’s scheme in Corelite

implicit AC for TCP connections

elastic traffic’s scheme in Flow-Aware Networking

“traditional” scheme

User-Share Differentiation scheme

schemes based on packet classes

Core-Stateless Fair Queuing based scheme

Figure 4. Main network schemes proposed in the Internet to provide the MTS for TCP elastic traffic.

3.1 The “traditional” scheme

The “traditional” scheme in the Internet is only based on FIFO and Tail Drop queues.

Traffic conditioning mechanisms are not used. All packets receive the same treatment and the

service provided is best-effort. The main advantage of the scheme is the simplicity. However,

it does not provide any isolation between flows, and in the case of traffic overload, flows

injecting more traffic “steal” resources from the rest (the output average rate is proportional

to the input average rate).

The combination of this scheme and TCP rate-adaptive algorithms (see Subsection 2.3)

aims to provide a fair throughput service. The goal is to provide a throughput equal to the fair

rate of the bottleneck link, i.e., the link’s capacity divided by the number of present flows,

although the effective resource sharing may exhibit unfairness in some situations (flows with

large RTT versus flows with small RTT, or short flows versus long flows). An obvious

consequence is that it is not possible to provide different throughputs to different TCP flows.

Moreover, the fair throughput service is achieved by TCP sources through a probing method,

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 48

increasing the sending rate while there is no congestion (e.g., no packet loss) and decreasing

it when congestion occurs, oscillating around the fair rate. Therefore, this approach relies on

cooperation between sources that implement the same algorithms. An advantage is that no

support from the network is needed, since the fair rate is not indicated to the TCP sources nor

enforced. However, some sources may not react against congestion (e.g., real-time sources

that do not decrease the sending rate) or react in a different way, so that well-behaved TCP

sources may receive smaller throughput (i.e., they are not protected).

An enhancement of the “traditional” scheme is achieved by replacing Tail Drop by an

Active Queue Management such as RED [18, 39]. One of the main goals of RED is to avoid

the so-called “TCP global synchronization problem”, which arises from the interaction

between TCP rate-adaptive algorithms and Tail Drop, in the following way: when a sequence

of packets arrives and the queue occupancy is high, multiple packets may be discarded; flows

experiencing this packet loss will decrease the sending rate at a similar time, and after a while,

when losses do not occur, they will increase the sending rate at a similar time, and so on,

becoming “synchronized”. Moreover, it is likely that the number of losses in a single flight of

packets of a flow is large, resulting in RTO expiration (a severe congestion indication), the

flow entering Slow Start, and a strong reduction in the sending rate. The synchronized

behavior together with the burstiness of TCP traffic leads to poor link utilization and low

aggregated throughput. RED works in the following way:

 It measures the queue’s average occupancy, avg, by using a low-pass filter or

exponentially weighted moving average of the instantaneous queue occupancy.

 It discards packets before the queue is full according to a dropping probability Pdrop

that depends on the average occupancy avg and two thresholds, min and max (see Fig.

5): when avg < min, no packet is dropped; when max < avg < min, the packet

dropping probability increases linearly with avg, from probability 0 to Pmax; when

avg > max, all packets are dropped. Therefore, the dropping probability of the arriving

packet is higher as avg increases.

avgmin max

Pmax

Pdrop

1

Figure 5. Dropping probability as a function of the queue’s average occupancy in RED.

Since RED uses an average occupancy, short bursts of packets (sort-term congestion) are

filtered, and thus ignored, without inducing packet loss. However, when bursts are longer

(long-term congestion), the average occupancy increases and packets start to be discarded to

indicate the congestion to sources. Note that RED detects incipient and light congestion and

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 49

provides an early indication: before several packets are discarded (indication of severe

congestion), it is likely that a single packet in a flight of packets of a flow is discarded,

resulting in Fast Retransmit, the flow entering Congestion Avoidance, and a weak reduction

of the sending rate. The probabilistic discarding avoids global synchronization, since only

some of the sources will experience packet loss and decrease the sending rate. When

congestion is stronger, the indication to sources is much more frequent (Pdrop increases with

avg). Moreover, the probabilistic packet discarding will tend to affect flows causing the

congestion more (the ones that receive higher throughput), since most of the arriving packets

will belong to them. Finally, note that when RED is used together with ECN [17], packets are

marked instead of being discarded, on the assumption that sources will react in the same way

as if a packet were lost. Numerous references about RED can be found in [37].

3.2 Schemes based on packet classes

These schemes are based on packet classes in a similar way to the Differentiated Services

(Diffserv) architecture [40]. Diffserv networks are based on packet classes, i.e., flows’

packets are assigned to a small number of classes at the ingress (a mark that identifies the

class is written in the packet’s header), and queue disciplines in the core apply a different

treatment to packets belonging to different classes. The mechanisms used in these schemes

are the following:

 Traffic conditioning mechanisms at the network ingress assign each flow’s packet to a

class and write a mark in the packet’s header that identifies the class (the number of

classes is small), according to an agreed traffic profile. Alternatively, the packets may

arrive at the network ingress already marked (e.g., previously by sources), and then

traffic conditioning at the network ingress checks and enforces the agreed traffic

profile (out-profile packets can be remarked or even discarded).

 Queue disciplines in the network core are based on classes, i.e., they apply a different

treatment to packets belonging to different classes.

Per-flow state is only kept at the edge while the core remains simple and highly scalable.

The use of traffic conditioning and class-based queues can allow isolation between flows and

different throughput to different flows to be provided, as well as the possibility to coexist

with other different network services.

3.2.1 The in and out scheme of the Assured Service

The Assured Service, defined within the so-called “allocated-capacity” framework in

[41], is able to provide different throughputs to flows from different users during congestion.

Moreover, it protects TCP flows against non-responsive sources. The proposed scheme uses

two packet classes, called in and out, with different discarding priorities (see Fig. 6):

 There is an input traffic profile (for each user) that defines the flow’s desired

minimum throughput rmin. The average sending rate of the flow r is measured and

compared with rmin in order to classify each packet as an in-profile or out-profile. The

goal of this classification is to obtain a sequence of in-profile packets with a rate equal

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 50

to the minimum throughput, specifically, min(r, rmin), and a sequence of out-profile

packets with a rate equal to the exceeding traffic above it, i.e., min(0, r- rmin). Packets

are marked accordingly as in or out.

 There is a single FIFO queue (to maintain packet ordering) with priority discarding so

that if a packet has to be discarded, the out class has a higher discarding priority than

the in class (this behavior was generalized and standardized by the IETF Diffserv

Working Group in the definition of the AF PHB [42]).

As a consequence, in packets have a higher assurance of delivery than out packets. The

desired minimum throughput is provided when the aggregated in traffic does not cause an

overload in any of the links of the network path. When an overload occurs, the throughput

provided to each flow is a share of the bottleneck link’s capacity that is proportional to (and

smaller than) the desired one. Therefore, the difference between the provided throughputs

during congestion comes from the different desired throughputs of the input traffic profile of

flows (users).

out-profile: mark out

r

t

rmin

in-profile: mark in rb bps

in, out

network ingress:

packet marking(e.g., TSW)

network nodes:

class-based queue disciplines (e.g, RIO)
+

Figure 6. The in and out scheme of the Assured Service.

The following algorithms were proposed in [41] to implement this scheme (similar

algorithms were also proposed in [43]):

 The flow’s average rate is estimated using the TSW (Time-Sliding Window)

algorithm, and the marker is based on a probabilistic function.

 The priority discarding in queues uses the RIO (RED with In and Out bits) algorithm.

TSW provides a smooth estimate of the TCP sending rate in a way suitable to the

burstiness of TCP traffic. The average sending rate avg_rate is estimated upon each packet

arrival and over the last period of time (or window), which considers a “past history” equal to

the so-called win_length parameter. The algorithm is simple since the only state variables are

the arrival time of the previous packet and the previous value of avg_rate. A difficulty is that

the recommended value for win_length is the flow’s RTT, which is usually not known at the

network ingress. Therefore, a fixed value has to be used and the average rate is not optimally

estimated. A proposed solution is to implement this algorithm and the marking in the TCP

source itself, which has an estimate of the actual RTT (in this case, the network would then

check and enforce the agreed traffic profile).

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 51

The marker is based on a probabilistic function. Once avg_rate for the arriving packet is

calculated, the marker decides whether the packet is in or out in the following way: if

avg_rate is smaller than the desired throughput RT, the packet is in; otherwise, the packet is

out with probability Po = (avg_rate−RT)/avg_rate or in with probability 1−Po (a variant is

using 1.33·RT instead of RT as a threshold). The probabilistic function is used to space out

packets and to reduce the probability of consecutive drops in a single flight of packets, which

could lead TCP to enter Slow Start and severely reduce the sending rate. The design of TCP

markers has been a subject of research and there have been more proposals (e.g., [43, 44]).

The RIO algorithm extends RED to work with two classes. Two sets of parameters are

used and two separate average buffer occupancy calculations are tracked, one only for in

packets and another one for all (in plus out) packets (see Fig. 7):

 The dropping probability of in packets depends only on the buffer occupancy of in

packets avgin, with parameters minin, maxin, Pmaxin.

 The dropping probability of out packets depends on the buffer occupancy of in plus

out packets avgtot, with parameters mintot, maxtot, Pmaxout.

avginminin maxin

Pmaxin

Pdrop in
1

avgtotmintot maxtot

Pmaxout

Pdrop out
1

Figure 7. Dropping probability as a function of the queue’s average occupancy in RIO.

RIO’s objective is to discriminate out packets from in packets: when there is incipient

congestion, RIO first drops some out packets; if the congestion persists, RIO drops all the out

packets; finally, in packets are only dropped when the router is flooded with in packets.

Therefore, RIO parameters have to be chosen carefully (e.g., 40, 70, 0.02 for in and 10, 30,

0.2 for out, are one of the choices in [41]).

3.2.2 TCP-state based differentiation

This scheme [5] uses three packet classes, called high, med and low, with different

discarding priorities (following the AF PHB definition [42]):

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 52

 Packets are marked in the host by TCP sources as high, med or low. The marking

algorithm depends on the TCP state, i.e., on the actual value of the window and on the

identification of some “important” packets, as we describe below in more detail.

 An agreed traffic profile specifies the total aggregated rate of high and med packets

per user, in the form of two token bucket profiles. At the network ingress, traffic

conditioning mechanisms enforce this traffic profile, and out-profile packets can be

remarked to a lower priority or even discarded. Note that traffic conditioning is made

over the user’s flow aggregate, and therefore it is in the best interest of sources to

mark packets in conformance with the agreed traffic profiles.

 There is a single FIFO queue (to maintain packet ordering) with priority discarding so

that if a packet has to be discarded, the low class has the highest discarding priority,

the med class the medium discarding priority, and the high class the lowest discarding

priority. The algorithm in queues is an extension of RED for three classes (like RIO is

an extension of RED for two classes).

The marking algorithm at the TCP source considers two cases:

 In the first case, the marking is based on the actual value of the window (since the

average sending rate – in RTT – is roughly equal to the window size divided by RTT).

The algorithm considers that if a connection is performing well and the window is

high, there is no need to protect its packets and it is better to use the high marks to

improve the performance of other connections that need it; if then the connection

suffers packet drops and its window is reduced, marking its packets as high can help it

to recover. Following these ideas, the window-based marking compares the actual

congestion window cwnd with two thresholds, highthresh and medthresh, in the following

way: if cwnd highthresh, packets are marked as high, if highthresh < cwnd medthresh,

packets are marked as med, and if cwnd > medthresh, packets are marked as low.

 In the second case, the algorithm identifies some “special” packets, the ones that are

more important for the stability of the TCP congestion control algorithms, and marks

them as high. Specifically, these packets are the connection establishment packets

(important for the initial RTT measurement and RTO calculation), the data packets

sent when the window is small (since TCP is more vulnerable to losses), and the data

packets retransmitted after an RTO expiration or Fast Retransmit (since their loss

could lead to RTO expiration). Note that some of these packets could also be marked

as high by the window-based marking.

This scheme compensates for the unfairness experienced by short TCP flows. As we have

seen in Subsection 2.3, short flows tend to achieve smaller throughput than long flows

because their initial window is usually small and because they are more vulnerable to losses.

This scheme identifies these situations and prioritizes packets to reduce losses; therefore, it

tends to provide a fair throughput service, i.e., to share network resources equally between

flows. Moreover, note that traffic conditioning mechanisms at the network ingress provides

isolation between flows from different users.

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 53

Throughput differentiation is achieved by using different marking thresholds for different

flows. The differentiation can be at the application level (e.g., higher thresholds for web than

for ftp), at the user level (e.g., demanding users have higher thresholds than “normal” users),

or even for different transferred documents (e.g., higher thresholds for transferring basic web

files than for the rest of the web page objects).

3.2.3 Preferential treatment to short TCP flows

These schemes [45, 46] give preferential treatment to short flows over long flows by

using different packet classes. The aim is two-fold: to compensate for the unfairness

experienced by short flows, which tends to get less than their fair share when they compete

for the bottleneck link’s capacity; and giving priority to short flows, which has been shown to

reduce the transfer time of short documents without hurting the performance for long flows,

when considering heavy tailed document size distributions (see Subsection 2.3).

Neither scheme provides isolation between flows. Two packet classes are used, e.g.,

called short and long:

 At the network ingress, the first packets of each flow are marked as short and the rest

as long, according to a defined threshold.

 Short packets are preferentially treated over long packets in queues.

Note that the proposed short and long marking does not result in a classification between

short and long flows, since the first packets of long flows are also marked as short. However,

this is a desired feature, since in fact the unfairness is not between short and long flows but

rather between the first packets of flows and the rest of the packets (i.e., the first packets of

long flows experience the same problems). Therefore, the preferential treatment to the short

class helps all flows.

The preferential treatment in queues in [45] is based on RIO, i.e., short packets are

discarded less than long packets, so that they experience fewer losses. The preferential

treatment in [46] is based on priority queuing, i.e., short packets are served before long

packets, so that they experience fewer losses and smaller delays (also note that packet

ordering in a flow is still maintained).

3.3 Core-Stateless Fair Queuing (CSFQ) based scheme

This scheme [47] provides a fair throughput service as well as isolation between flows.

Moreover, by assigning a weight to the flow, it can be extended to provide different

throughputs to different flows, proportionally to the flows’ weights.

The scheme uses the CSFQ algorithm in queues, which closely emulates the behavior of

the FQ algorithm, but without needing a per-flow state. Instead, per-flow state is carried by

packets using the Dynamic Packet State (DPS) technique: the state variables are encoded in

the packet’s header and then are used and modified by the queue disciplines. In this scheme

the state is the flow’s rate:

 The incoming rate of each flow is estimated at the network ingress and a label is

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 54

written on its packets carrying the value of this rate.

 The queue discipline uses FIFO together with the CSFQ algorithm, which

probabilistically discards packets so that each flow receives the fair rate in the link.

CSFQ only uses the packet’s label and measurements over aggregates.

The ingress router, upon each packet arrival, classifies the packet into a flow, updates the

estimation of the flow’s rate r, and labels the packet with r. This estimation is based on an

exponential weighted moving average of the instantaneous rate (with a weight that depends

on the packet inter-arrival time).

CSFQ in all routers works as follows:

 Each router periodically estimates the fair rate f in the link.

 Upon receiving a packet labeled with incoming rate r, the router drops the packet with

probability Pdrop = max[0, (r-f)/r]. Therefore, if r f, all packets of the flow are

forwarded and the flow’s output rate is kept to r; if r > f, some packets of the flow are

probabilistically discarded (hopefully, (r-f)/r is the fraction of discarded packets), so

that the output rate is approximately decreased to f. In any case, when a packet is

forwarded, the router updates the packet’s label with the flow’s output rate (the

minimum between f and the incoming r), which is the new flow’s arrival rate for the

next router.

The fair rate f in the link is estimated at certain times. The router continuously measures

the aggregated incoming rate A and the aggregated forwarded rate F (both with the same

procedure used for the flow’s incoming rate at the ingress) in the link of capacity C. If there is

no congestion (A < C), f is chosen as the maximum flow’s rate between the flows that

traverse the link, i.e., the maximum packet label observed in that time (and therefore the

discarding probability is 0 for all packets of all flows). If there is congestion (A C), a

heuristic and iterative algorithm varies f (and therefore Pdrop and F) by a factor C/F until it

converges, i.e., until F matches C.

This scheme provides a fair throughput service and isolation between flows without

needing a per-flow state in the core. However, it requires the state to be processed and

updated for each packet in each router, and the state in the packet’s header to be encoded.

3.4 User-Share Differentiation (USD) scheme

This scheme [48, 49] is able to provide different throughputs to flows from different

users proportionally to some agreed users’ weights, but in an aggregated way. Moreover, it

provides isolation between flows from different users. The basic points of the USD scheme

are the following:

 Each user has a weight (defined in a user-provider agreement), which controls

resource sharing between users for both its sending and its receiving traffic.

 The queue discipline uses the WFQ algorithm or similar, which shares the link’s

capacity fairly between the traffic from different users according to the weights.

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 55

The user is chosen as the basic unit that defines traffic control granularity, so that all

traffic that has originated from a user or destined to a user is aggregated within the network

(within the traffic of a single user it is up to the user to decide how the service is shared

internally). The state needed inside the network is reduced since it is not flow-based but

rather user based. In each router there is a table with the user identifier and its associated

weight (the user identifier can be the IP address of an end-user, the network prefix for a

network, or a set of network prefixes for a group of networks). The per-user state makes the

scheme highly scalable in the hierarchical structure of recursive user-provider relationships of

the Internet.

The user identifier and its corresponding weight could be distributed to routers inside the

network through a network management protocol. For each arriving packet, the router looks

up the weight of the sending user and the weight of the receiving user in the table, since both

weights control the sharing. This conflict is solved by making the WFQ scheduler use the

minimum of the two weights.

Isolation between traffic of active users is provided by WFQ without needing specific

traffic conditioning mechanisms at the network ingress. If one user transmits more than its

actual allocated throughput in a given link, it will cause its own packets to be dropped in the

queues.

4. Network schemes for TCP elastic traffic with admission control

In this section we review the main network schemes that have been proposed in the

Internet to provide a network service for TCP elastic traffic when the mechanisms used are

basically traffic conditioning, queue disciplines and AC. Therefore, when resources in the

followed network path are enough to satisfy the minimum throughput requirements of all

flows, all of them are satisfied; otherwise, i.e., during congestion situations, some of them

receive the minimum throughput (they are “accepted”) and the rest do not receive it (they are

“rejected” or “blocked”). Congestion situations can be reduced by increasing network

resources or by optimizing their use through better routing techniques. The blocking rate

depends on the behavior of users’ demands, the chosen resource provisioning, the routing

techniques used, and the capability of the AC mechanism to maximize the number of satisfied

flows. If nevertheless, congestion occurs, using AC achieves an efficient use of network

resources by maximizing the number of satisfied flows, although it complicates the network

scheme.

A possible scheme would be using FQ or WFQ scheduling at flow level in all routers and

a classical parameter-based hop-by-hop AC. With FQ each flow would receive the same

minimum throughput and an extra throughput equal to the max-min fair share of the

remaining resources. With WFQ different flows would receive different minimum

throughputs according to the assigned weights, and an extra throughput equal to the weighted

max-min fair share of remaining resources. Isolation between flows would be provided by

queues without needing specific traffic conditioning mechanisms. Per-flow signaling would

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 56

carry the flow’s minimum throughput request from router to router through the path, and each

router would perform a local AC decision to limit the number of flows in each link so that

accepted flows would receive their desired minimum throughput. However, this scheme

would be too complex. It would require per-flow state and per-flow management in all

routers. Given that most elastic flows are short (Subsection 2.4), using per-flow signaling

would imply a high overhead and a rather long duration of the AC phase.

In the next subsections we review the following set of schemes for TCP elastic traffic

with AC (see Fig. 4): the scheme for a guaranteed throughput service in the Corelite

architecture, the implicit AC for TCP connections and the scheme for elastic traffic in the

Flow-Aware Networking architecture. For each of them, we describe the main characteristics

of the service, that is, whether the minimum throughput can be different or is the same for all

flows, the expected extra throughput that results from sharing the remaining resources, and

whether isolation between flows is provided (so that flows sending more traffic than their

allocated throughput do not damage well-behaved flows that do send according to their

allocated throughput), and also the architecture of the scheme, that is, the specific

mechanisms used, the required state and the use of signaling.

4.1 The scheme for a throughput service in Corelite

The Corelite architecture provides several throughput and delay services using the same

set of basic mechanisms. The scheme for a throughput service [50, 51] is able to provide

different minimum throughputs rmin to different flows, and an extra throughput according to a

weight w. It has two modes, which differ in the kind of guarantees: it is deterministic in the

“guaranteed” mode (there is no loss if the sending rate is not higher than rmin), and it is

qualitative in the “predictive” mode (low loss if the sending rate is not higher than rmin). It

provides isolation between flows through traffic conditioning at the network ingress. Per-flow

signaling is used to indicate the start of the flow, the requested rmin and the AC response.

Per-flow state in the core is not required. We explain the AC scheme below, but firstly we

describe the mechanisms used when a flow (in either mode) has already been accepted by

AC:

 The ingress router performs traffic conditioning over the flow depending on the

comparison between the actual flow’s average rate r and two thresholds, rmin and rmax,

where rmin is the minimum throughput and rmax is equal to rmin plus an extra

throughput that is adapted according to the feedback received from core routers. A

token bucket algorithm is used for measuring r. Flow’s packets are classified into

three types (resulting in three “subflows”): in-profile packets, with a rate equal to

min(r, rmin); out-profile packets, with a rate equal to min(0, r-rmin, rmax-rmin); and the

exceeding packets, with a rate equal to min(0, r-rmax). The exceeding packets are

discarded; the other packets are forwarded and some of them may also be turned into

special packets called “markers”, as we explain in the next point.

 The ingress router periodically turns some flow’s packets into markers: one marker is

inserted for every N number of “data” packets (or bytes) and each marker carries N.

Therefore, the transmission rate of markers taking into account the carried N reflects

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 57

the rate of the flow. Markers carry the source address of the ingress router, a unique

identification of the flow within the ingress router, and the number of “data” packets

(or bytes) that they represent. Markers are logically distinct packets, but are physically

piggybacked to a “data” packet. The use of markers differs if the mode is “predictive”

or “guaranteed”, as we explain in the next point.

 For “predictive” flows, p-markers for in-profile packets and w-markers for out-profile

are used. One p-marker is introduced for every Np = K1·rmin “data” packets (or bytes)

of in-profile traffic, where K1 is a constant. Each p-marker carries Np. One w-marker

is introduced for every Nw = K2·w “data” packets (or bytes) of out-profile traffic,

where K2 is a constant and w is the weight. Each w-marker carries Nw. If the actual

flow’s rate is smaller than rmin, the rate of p-markers reflects this rate (and no

w-markers are introduced); if the actual flow’s rate is greater than rmin, the rate of

p-markers reflects rmin and the rate of w-markers reflects the extra rate of the flow

(above rmin), normalized according to the weight w.

 For “guaranteed” flows, g-markers for in-profile packets and w-markers for

out-profile are used, in a similar way as for “predictive”. The only difference is that if

the actual flow’s rate is smaller than rmin, the rate of g-markers does not reflect this

rate but rather the minimum rmin.

 Routers use FIFO queues. They also extract the markers from packets and maintain a

queue of p-markers, g-markers and w-markers. When congestion is detected, a

random number of w-markers are selected and sent back to the ingress router that

generated it (if there were no w-markers, firstly p-markers and then g-markers would

be selected, but this is not likely to happen as AC is used). Also note that the

w-markers of flows with a greater weight w are less likely to be selected.

 Periodically, the ingress router checks the markers received from core routers during

the last time period corresponding to a flow. The flow’s threshold rmax is reduced in

proportion to the received markers, and if no marker has been received, it is increased

additively by a constant.

The AC scheme is hop-by-hop since each router performs a local AC decision. Per-flow

signaling carries the AC requests and responses, but it does not require a per-flow state in the

core. The duration of the AC phase is about one RTT. The scheme is the following:

 A request signaling packet with the rate requirement rmin is sent along the path.

 Each router maintains the available bandwidth Bav, which is calculated using the

received markers and updated at a certain time period.

 A router in the path receives the request packet. If the request can be accepted (rmin <

Bav), the router reduces Bav by rmin and forwards the request packet to the next router;

otherwise a reject response signaling packet is sent back to the ingress.

At the beginning of a given time period, each router knows the available bandwidth Bav

for this period. A request is accepted if rmin is available. If so, Bav is reduced by rmin and the

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 58

resulting value of Bav is used for the next AC decision until the end of this time period.

During this time period the router estimates the value of Bav to be used for the next time

period. It is calculated from the number of p-markers and g-markers received over that time

(the router counts the number of packets – or bytes – that the marker represents, which is

carried by the marker). Note that in Bav, due to the different ways that p-markers and

g-markers are generated, the aggregated rate of “predictive” flows is based on “real”

measurements that aim to take into account the multiplexing gain, while the aggregated rate

of “guaranteed” flows is based on “virtual” measurements that aim to equal the sum of the

reserved rates of flows (i.e., based on their declared traffic parameters). Therefore, the

“guaranteed” mode provides a deterministic guarantee, probably at the cost of reducing

resource utilization, while the “predictive” mode can be more efficient in using resources but

it provides a qualitative guarantee.

This scheme is able to provide different minimum throughput to different flows and

isolation. It does not require per-flow state in the core or per-flow queuing. However, it

requires per-flow signaling, which could result in a high overhead, a rather long duration of

the AC phase, and quite complex management for the markers. Finally, there are no details

about how TCP flows are defined and identified in the scheme.

4.2 Implicit AC for TCP connections

These schemes [52, 53] provide the same minimum throughput to all flows, which here

are defined as TCP connections. The guarantee is qualitative. It does not provide isolation to

accepted flows. The start of the flow (connection) and the AC response are implicitly

indicated without signaling. The AC is fast. Per-flow (connection) state is not required in any

router. Therefore, their main advantage is the simplicity. The mechanisms used are the

following:

 The queue discipline is FIFO and there is no traffic conditioning mechanisms at the

ingress, as in the “traditional” scheme (see Subsection 3.1). Therefore, isolation

between flows is not provided and the fairness in resource sharing between the

accepted flows depends on the TCP rate-adaptive algorithms.

 The AC scheme is based on measurements and without signaling. The AC algorithm

measures the actual use of resources through a particular parameter, which is

compared to a threshold to make the AC decision.

The authors only consider the AC in a single link, although it could be extended to a

hop-by-hop scheme (or obviously to a one-hop scheme on logical paths with reservation).

The start of the flow (connection) is implicitly indicated to the router through its first packet,

i.e., the TCP connection establishment packets (SYN or SYN/ACK). The AC response is also

implicitly indicated to the flow: in the case of acceptance, the connection establishment is

allowed to proceed by forwarding the detected establishment packet; in the case of rejection,

the connection establishment is aborted, by sending an RST packet to the sender [52] or by

discarding the detected establishment packet [53]. Therefore, the AC is simple and moreover,

it is fast as it is made as soon as a new flow arrives (in a hop-by-hop scheme, no signaling

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 59

packet carrying the AC response of acceptance or rejection in the whole path is sent back to

the ingress, and an accepted flow does not have to wait to start to transmit). Moreover, the

scheme assumes that aborting a connection implies that the TCP source will not transmit any

packet, and that the accepted TCP connections will share resources fairly as usual. Therefore,

the scheme does not have to control whether the packets entering the network belong to an

accepted flow or to control the traffic sent by accepted flows to provide isolation, and

per-flow (connection) state is not required in any router. Therefore, the scheme relies on TCP

sources being well-behaved, as in the “traditional” scheme. Another disadvantage of this

scheme is that it is not possible to detect sequences of packets that occur as bursts within

persistent TCP connections.

The AC algorithm in [52] measures the actual occupancy of the link and compares it with

a given threshold, and when it is exceeded, new arriving connections are rejected.

Specifically, a hysteresis with two thresholds is built to avoid excessive oscillations:

connections are rejected when the occupancy exceeds the higher threshold and until the

occupancy decreases below a lower threshold. The authors suggest occupancy thresholds of

around 90% of the link’s capacity. The relationship between the occupancy threshold and the

connections’ throughput comes from an analytical model, which considers ideal fair resource

sharing of a random number of flows. For example, the model predicts an average flow’s

throughput equal to 20% of the link’s capacity when the occupancy is around 90%. In the

case of [53], the AC algorithm measures the incoming traffic to the link’s queue and derives

the actual overflow (loss) probability using a statistical model. A new arriving connection is

rejected whenever this packet loss probability exceeds a given threshold. In this way a

minimum throughput is provided since TCP’s throughput is related to packet loss. However,

note that both AC algorithms use parameters loosely related to the flow’s throughput, and

therefore tuning the performance is not easy. Moreover, both AC algorithms do not

immediately consider the effect of a recently accepted flow until future measurements take it

into account. This takes some time and therefore a high rate of new arriving flows to a router

may cause false acceptances (however, this has another consequence if a hop-by-hop scheme

were used: the partial acceptance of a flow in a hop, which later is rejected in the following

hops, would not prevent other flows from being accepted in this hop; therefore, it would not

lead to false rejections).

4.3 The scheme for elastic traffic in Flow-Aware Networking

The Flow-Aware Networking (or Cross-Protect) architecture [54, 55, 56] provides two

services, a low jitter and low loss service for real-time flows and a minimum throughput

service for elastic flows. The minimum throughput’s value is the same for all elastic flows

while the peak rate of real-time flows should be smaller than a given value. The guarantees

are qualitative. It provides isolation to accepted flows. The user-network interface remains as

simple as in the traditional Internet, since implicit ways are used instead of per-flow signaling.

The AC is fast. It requires per-flow state and per-flow queuing in all routers. The two basic

mechanisms are the following:

 The queue discipline uses the Priority Fair Queuing (PFQ) algorithm [55], which

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 60

shares the link’s capacity fairly between all flows and also gives priority to flows

whose peak rate is less than the current link’s fair rate. It requires per-flow state in

each router.

 The AC scheme is hop-by-hop, based on measurements and does not use signaling. It

requires per-flow state in each router. It does not differentiate between elastic and

real-time flows or different traffic rates. It ensures that the current priority traffic load

is smaller than a given percentage of the link’s capacity, and that the fair rate is higher

than a given threshold. This threshold is chosen to be higher than the peak rate of

expected real-time flows, so that they receive scheduling priority in PFQ queues.

PFQ is an enhancement of the FQ algorithms. Like FQ it shares the link’s capacity fairly

between all flows, so that each flow receives the max-min fair share and is isolated from

other flows. In addition to this, PFQ gives scheduling priority to packets from flows whose

peak rate is smaller than the current fair rate, so that these flows experience low jitter and low

loss. In this way the requested flow’s QoS (real-time or elastic) can be implicitly indicated

(without signaling): a flow whose peak rate is smaller than the fair rate is considered a

real-time flow; otherwise it is considered to be an elastic flow.

AC and PFQ help each other. AC maintains the fair rate above a threshold, which is

chosen to be higher than the expected peak rates of real-time flows. PFQ maintains a list of

active flows, which is smaller than the list of accepted flows, and scalability is assured by the

fact the number of flows is bounded by AC. PFQ provides two measurements that are used by

the AC algorithm: fair_rate, an estimation of the rate currently realized by backlogged flows,

and prio_load, the current load of the traffic receiving scheduling priority.

The AC scheme is hop-by-hop since each router performs a local AC decision (it could

also be used as a one-hop scheme on logical paths with reservation). It does not use any

signaling and therefore it requires per-flow state in each router to detect the new flows. Each

router maintains a list of accepted flows in an implicit way. A new flow is indicated to a

router by the arrival of its first packet, the router indicates a local acceptance decision of the

flow by forwarding this packet or a local rejection decision by discarding it, and the end of

the flow is detected when no packet is received within a defined timeout interval. This way

has the advantage of not requiring signaling, and in the case of elastic traffic, sequences of

packets that occur as bursts within persistent TCP connections can be detected. Per-flow state

consists in a flow identifier and the arrival time of the last packet of each flow. A flow is

identified by the usual 5-tuple in IPv4 (protocol, source and destination IP addresses and

ports) or by the more flexible 3-tuple in IPv6 (flow label, source and destination IP addresses).

Specifically, the procedure is the following. For each arriving packet, the list is checked. If

the packet belongs to a flow in the list, it is forwarded and the last packet arrival time of the

flow in the list is updated. If the packet does not belong to any flow in the list, an AC decision

for the new flow is made. If the flow is accepted, the packet is forwarded and a new entry is

added to the list. If the flow is rejected, the packet is discarded. A flow is erased from the list

when the time since the last packet arrival exceeds the defined timeout.

The AC scheme does not use any explicit indication of the requested service, neither the

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 61

QoS (real-time or elastic) nor the traffic parameters (the minimum throughput for elastic or

the peak rate for real-time). The AC algorithm does not distinguish between elastic and

real-time flows. The traffic parameter of the new arriving flow is implicitly supposed to be a

given value, which is defined by the network (the maximum between the following values:

the minimum throughput of elastic flows and the possible peak rates of real-time flows). This

implicit approach has two important advantages: signaling carrying the flow’s traffic

parameters is not required, and the blocking probabilities of all flows are equal,

independently from their requested traffic rate (see the “trunk reservation” mechanism in

[57]).

The AC algorithm is based on measurements using the above mentioned fair_rate and

prio_load. The general goal of the AC algorithm is to ensure that the current priority traffic

load (prio_load) is smaller than a given percentage of the link’s capacity, and that the fair rate

(fair_rate) is higher than the mentioned threshold (i.e, a value higher than the expected peak

rates of real-time flows). The detailed algorithm is not specified (e.g., the percentage of link’s

capacity for prio_load, or whether the measurements of fair_rate and prio_load are

artificially updated once a flow is accepted in order to establish a reservation immediately),

although a recommended threshold for the fair rate is about 1% of the link’s capacity.

Note that the AC is fast, as it is made as soon as a new flow arrives, since no signaling

packet carrying the AC response (of acceptance or rejection) in the whole path is sent back to

the ingress, and an accepted flow does not have to wait to start to transmit. Also note that, as

it happens in any hop-by-hop AC scheme, a partial reservation in a hop for a flow

(established immediately when it is accepted), which is later rejected in other hops, may

prevent other flows from being accepted in this hop (for some time), leading to false

rejections. However, in this scheme, since no AC response signaling packet is sent back to the

ingress, this situation can last for more time and be worse if a rejected (but partially accepted)

flow persists in transmitting (although this is not likely to happen).

5. Conclusions

The users of “data” applications such as web browsing, peer-to-peer file sharing, ftp,

e-mail and other, expect that there is no error in the transfer of documents and also that the

response time is the smallest possible below a certain maximum value. Therefore TCP elastic

flows generated by these applications are satisfactorily supported by a network service that

provides a minimum throughput to the flow and if possible, an extra throughput, the

Minimum Throughput Service (MTS). With this in mind, we have reviewed the main

network schemes that have been proposed in the Internet for TCP elastic traffic, with and

without AC, focusing on the main characteristics of the service and their architecture.

We have studied the following network schemes without AC:

 The “traditional” scheme provides the best-effort service, which in combination with

TCP rate-adaptive algorithms provides a fair throughput service. Different

throughputs and isolation between flows are not provided. It is based only on FIFO

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 62

and Tail Drop (or RED) queues.

 The schemes based on packet classes can provide different throughputs and isolation

between flows. Traffic conditioning mechanisms at the ingress assign each flow’s

packet to a class (e.g., by comparing the flow’s average sending rate and the flow’s

desired minimum throughput, flow’s packets are assigned to an in or out class) and

queue disciplines are based on classes (e.g., the out class has a higher discarding

priority than the in class). Per-flow state is only kept at the edge while the core

remains simple and highly scalable.

 The scheme based on CSFQ provides a fair throughput service (a weighted version is

also possible) and isolation between flows. The ingress router estimates the flow’s

incoming rate and writes it on a label in the packet’s header. The CSFQ algorithm in

queues discards packets probabilistically, using only the packet’s label and aggregated

measurements, so that each flow receives the fair rate. Per-flow state is only required

at the edge. However, it requires processing and updating the label for each packet in

each router, as well as encoding the label in the packet’s header.

 The USD scheme provides different throughputs to flows from different users but in

an aggregated way. It provides isolation between flows from different users. Each user

is assigned a given weight and WFQ in queues share resources between users

according to this weight for both the sending and the receiving traffic. It requires

per-user state in all routers (it does not require per-flow state).

We have studied the following network schemes with AC:

 The scheme for a throughput service in Corelite provides different minimum

throughputs to different flows as well as isolation. The ingress router turns some

flows’ packets into the so-called (g or p) markers, so that their rate indicates the

minimum throughput, and other flows’ packets into w-markers, so that their rate

indicates the assigned extra throughput. In each router, ordinary and marker packets

are scheduled together with FIFO. When congestion is detected w-markers are sent

back to the ingress router, which then decreases the extra throughput assigned to the

flow. The AC scheme is hop-by-hop, per-flow signaling carries the AC request and

response, and each router determines the aggregated reservation by measuring the

arriving g and p markers during a given time period. It neither requires per-flow state

in the core nor per-flow queuing. However, it requires per-flow signaling, which could

result in a high overhead and a rather long duration of the AC phase as well as quite

complex management for the markers. Finally there are no details about how TCP

flows are defined and identified in the scheme.

 The scheme with an implicit AC for TCP connections provides the same minimum

throughput to all flows, which are defined here as TCP connections. It does not

provide isolation. The data path is simply based on FIFO queues, and the AC scheme

is hop-by-hop (or a one hop scheme on logical paths with reservation). It is based on

measurements and it does not have signaling. The start of the flow (connection) is

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 63

indicated to a router through the TCP connection establishment packets: in the case of

acceptance, the connection establishment is allowed to proceed by forwarding these

packets, and otherwise, it is aborted. Therefore, the AC is fast, as it is made as soon as

a new flow arrives. For the local AC decision, the router measures the actual use of

resources through a particular parameter, and when it exceeds a given threshold, new

connections are rejected. Per-flow (connection) state is not required in the core or at

the edge. However, the scheme relies on TCP sources being well behaved. It does not

detect sequences of packets that occur as bursts within persistent TCP connections.

Tuning the performance is not easy since the parameters measured are loosely related

to the flow’s throughput. The AC algorithms do not immediately consider the effect of

a recently accepted flow until future measurements take it into account. This takes

some time, and therefore, a high rate of new arriving flows to a router may cause false

acceptances.

 The scheme for elastic traffic in Flow-Aware Networking provides the same minimum

throughput to elastic flows, which are defined here as sequences of packets within

TCP connections. A service for real-time flows is also provided. The scheme provides

isolation. Queues use the PFQ algorithm, which shares the link’s capacity fairly

between flows, provides isolation and gives priority to flows whose peak rate is less

than the current link’s fair rate (i.e., for real-time flows). PFQ requires per-flow state.

The AC scheme is hop-by-hop (or a one hop scheme on logical paths with

reservation), based on measurements and without signaling. The AC requires a

per-flow state. A new flow is indicated by the arrival of its first packet. The router

indicates a local acceptance decision of the flow by forwarding this packet or a local

rejection decision by discarding it. The end of the flow is detected when no packet is

received within a defined timeout interval. Therefore, the AC is fast, as it is made as

soon as a new flow arrives. The AC algorithm does not differentiate between elastic

and real-time flows and the traffic rate of the new arriving flow is supposed to be the

maximum possible value. It ensures that the current priority traffic load is smaller

than a given percentage of the link’s capacity, and that the fair rate is higher than a

given threshold (which is chosen to be higher than the peak rate of the expected

real-time flows).

From among the different network schemes without AC we have studied, the ones based

on packet classes show a good trade-off between the simplicity (per-flow operations are kept

at the edge only) and the service characteristics (they allow different throughputs and

isolation between flows to be provided). Out of the network schemes with AC we have

studied, we found that is of special interest the definition of flow used in the scheme for

elastic traffic in Flow-Aware Networking, as it captures the sequences of packets that occur

as bursts within persistent TCP connections, as well as the implicit way of detecting the start

and end of these flows. Another interesting aspect of some of these schemes with AC is the

utilization of implicit ways for indicating the requested service parameters (QoS and traffic),

although they achieve this by providing the same minimum throughput to all flows. In all of

them the AC is hop-by-hop and based on measurements. However, they require either

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 64

per-flow signaling in the core, or are not able to provide different throughputs or isolation

between flows, or require per-flow state and per-flow queuing in the core.

References

[1] Postel J., “Transmission Control Protocol”, RFC 793, 1981.

[2] Tobagi F., Noureddine W. , “The Transmission Control Protocol. An introduction to TCP

and a research survey”, Technical Report, Stanford University, 2002.

[3] Comer D.E., “Internetworking with TCP/IP. Volume I”, published by Prentice Hall, ISBN

0-13-227836-7, 1995.

[4] Massoulié L., Roberts J.W., “Arguments in favor of admission control for TCP flows”,

Proceedings of the 16th International Teletraffic Congress - ITC16, Edinburgh, UK, June

1999.

[5] Noureddine W., Tobagi F., “Improving the performance of interactive TCP applications

using service differentiation”, Elsevier Computer Networks, vol. 40, no. 1, 2002.

[6] Shenker S., “Fundamental design issues for the future Internet”, IEEE Journal on

Selected Areas in Communications, vol. 13, no. 7, 1995. http://dx.doi.org/10.1109/49.414637

[7] Jacobson V., “Congestion avoidance and control”, ACM SIGCOMM Computer

Communication Review, vol. 18, no. 4, 1988. http://dx.doi.org/10.1145/52325.52356

[8] Braden R., “Requirements for Internet hosts - communication layers”, RFC 1122, 1989.

[9] Mathis M., Mahdavi J., Floyd S., Romanow A., “TCP selective acknowledgment

options”, RFC 2018, 1996.

[10] Floyd S., Mahdavi J., Mathis M., Podolsky M., “An extension to the selective

acknowledgement (SACK) option for TCP”, RFC 2883, 2000.

[11] Allman M., Paxson V., Stevens W., “TCP Congestion Control”, RFC 2581, 1999.

[12] Paxson V., Allman M., “Computing TCP's retransmission timer”, RFC 2988, 2000.

[13] Massoulié L., Roberts J.W., “Bandwidth sharing: objectives and algorithms”, IEEE/ACM

Transactions on Networking, vol. 10, no. 3, 2002.

http://dx.doi.org/10.1109/TNET.2002.1012364

[14] Bertsekas D., Gallager R., “Data networks”, published by Prentice Hall, ISBN

0-132-00916-1, 1987.

[15]Massoulié L., Roberts J.W., “Bandwidth sharing and admission control for elastic traffic”,

Telecommunication Systems, vol. 15, no. 1-2, 2000.

[16] Bansal N., Harchol-Balter M., “Analysis of SRPT scheduling: investigating unfairness”,

ACM SIGMETRICS Performance Evaluation Review, vol. 29, no. 1, 2001.

[17] Ramakrishnan K., Floyd S., Black D., “The addition of Explicit Congestion Notification

(ECN) to IP”, RFC 3168, 2001.

[18] Floyd S., Jacobson V., “Random early detection gateways for congestion avoidance”,

IEEE/ACM Transactions on Networking, vol. 1, no. 4, 1993.

http://dx.doi.org/10.1109/90.251892

[19] Floyd S., Henderson T., Gurtov A., “The NewReno modification to TCP's Fast Recovery

algorithm”, RFC 3782, 2004.

[20] Fall K., Floyd S., “Simulation-based comparisons of Tahoe, Reno, and SACK TCP”,

ACM SIGCOMM Computer Communication Review, vol. 26, no. 3, 1996.

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 65

http://dx.doi.org/10.1145/235160.235162

[21] Blanton E., Allman M., Fall K., Wang L., “A conservative selective acknowledgment

(SACK) – based loss recovery algorithm for TCP”, RFC 3517, 2003.

[22] Chiu D.M., Jain R., “Analysis of the increase and decrease algorithms for congestion

avoidance in computer networks”, Computer Networks and ISDN Systems, vol. 17, no. 1,

1989. http://dx.doi.org/10.1016/0169-7552(89)90019-6

[23] Floyd S., Jacobson V., “On traffic phase effects in packet-switched gateways”,

Internetworking: Research and Experience, vol. 3, no. 3, 1992.

[24] Balakrishnan H., Padmanabhan V.N., Seshan S., Stemm M., Katz R.H., “TCP behavior of

a busy Internet server: analysis and improvements”, Proceedings of the IEEE Infocom 1998.

San Francisco, CA, USA.

[25] Brakmo L., Peterson L., “TCP Vegas: end to end congestion avoidance on a global

Internet”, IEEE Journal on Selected Areas in Communication, vol. 13, no. 8, 1995.

[26] Jin C., Wei D.X., Low S.H., Buhrmaster G., Bunn J., Choe D.H., Cottrell R.L.A., Doyle

J.C., Feng W., Martin O., Newman H., Paganini F., Ravot S., Singh S., “Fast TCP: from

theory to experiments”, IEEE Network, vol. 19, no. 1, 2005.

[27] Casetti C., Gerla M., Mascolo S., Sanadidi M. Y., Wang R., “TCP Westwood: end-to-end

congestion control for wired/wireless network”, Wireless Networks, vol. 8, no. 5, 2002.

http://dx.doi.org/10.1023/A:1016590112381

[28] Katabi D., Handley M., Rohrs C., “Congestion control for high bandwidth-delay product

networks”, ACM SIGCOMM Computer Communication Review, vol. 32 no. 4, 2002.

http://dx.doi.org/10.1145/964725.633035

[29] Aggarwal A., Savage S., Anderson T., “Understanding the performance of TCP pacing”,

Proceedings of the IEEE Infocom 2000, Tel-Aviv, Israel.

[30] Aweya J., Ouellette M., Montuno D.Y., “A self-regulating TCP acknowledgment (ACK)

pacing scheme”, International Journal of Network Management, vol. 12, no. 3, 2002.

http://dx.doi.org/10.1002/nem.426

[31] Floyd S., “HighSpeed TCP for Large Congestion Windows”, RFC 3649, 2003.

[32] Kelly T., “Scalable TCP: improving performance in high speed wide area networks”,

ACM SIGCOMM Computer Communication Review, vol. 32, no. 2, 2003.

[33] Xu L., Harfoush K., Rhee I., “Binary increase congestion control for fast long-distance

networks”, Proceedings of the IEEE Infocom 2004. Hong Kong, China, March 7-11, 2004.

[34] Tan K., Song J., Zhang Q., Sridharan M., “A Compound TCP approach for high-speed

and long distance networks”, Proceedings of the IEEE Infocom 2006. April 23 - 29, 2006,

Barcelona, Spain.

[35] Tian Y., Xu K., Ansari N., “TCP in wireless environments: problems and solutions”,

IEEE Communications Magazine, vol. 43, no. 3, 2005.

[36] Lai Y., Yao C., “TCP congestion control algorithms and a performance comparison”,

Proceedings of the 10
th

 IEEE International Conference on Computer Communications and

Networks, 2001. 15-17 Oct. 2001

[37] Floyd S., homepage at ICIR (the Center for Internet Research at the International

Computer Science Institute), http://www.icir.org/floyd/.

[38] Crovella M.E., Bestavros A., “Self-similarity in World Wide Web traffic: evidence and

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 66

possible causes”, IEEE/ACM Transactions on Networking, vol. 5, no. 6, 1997.

http://dx.doi.org/10.1109/90.650143

[39] Braden B., Clark D., Crowcroft J., Davie B., Deering S., Estrin D., Floyd S., Jacobson V.,

Minshall G., Partridge C., Peterson L., Ramakrishnan K., Shenker S., Wroclawski J., Zhang

L., “Recommendations on queue management and congestion avoidance in the Internet”,

RFC 2309, 1998.

[40] Blake S., Black D., Carlson M., Davies E., Wang Z., Weiss W., “An architecture for

Differentiated Services”, RFC 2475, 1998.

[41] Clark D.D., Fang W., “Explicit allocation of best-effort packet delivery service”,

IEEE/ACM Transactions on Networking, vol.6, no. 4, 1998.

http://dx.doi.org/10.1109/90.720870

[42] Heinanen J., Baker F., Weiss W., Wroclawsky J., “Assured Forwarding PHB group”,

RFC 2597, 1999.

[43] Feng W., Kandur D.D., “Adaptive packet marking for maintaining end-to-end throughput

in a differentiated-services Internet”, IEEE/ACM Transactions on Networking, vol. 7, no. 5,

1999.

[44] Kumar K.R.R., Ananda A.L., Jacob L., “TCP-friendly traffic conditioning in DiffServ

networks: a memory-based approach”, Elsevier Computer Networks, vol. 38, no. 6, 2002.

[45] Guo L., Matta I., “The war between mice and elephants”, Proceedings of the IEEE

International Conference on Network Protocols, 2001. 11-14 November 2001, Riverside, CA,

USA.

[46] Avrachenkov K., Ayesta U., Brown P., Nyberg E., “Differentiation between short and

long TCP flows: predictability of the response time”, Proceedings of the IEEE Infocom, 2004.

Hong Kong, China, March 7-11, 2004.

[47] Stoica I., Shenker S., Zhang H., “Core-stateless fair queuing: a scalable architecture to

approximate fair bandwidth allocations in high-speed networks”, IEEE/ACM Transactions on

Networking, vol. 11, no. 1, 2003. http://dx.doi.org/10.1109/ICDCS.2000.840929

[48] Wang Z., Basu A., “Resource allocation for elastic traffic: architecture and mechanisms”,

Proceedings of the IEEE/IFIP Network Operations and Management Symposium, 2000.

Honolulu, HI, USA, April 10-14, 2000.

[49] Wang Z., “User-Share Differentiation (USD) Scalable bandwidth allocation for

differentiated services”, Internet draft draft-wang-diff-serv-usd-00.txt, 1998.

[50] Sivakumar R., Kim T., Venkitaraman N., Bharghavan V., “Achieving per-flow weighted

rate fairness in a core stateless network”, Proceedings of the IEEE Conference on Distributed

Computing Systems, 2000. 10-13 April 2000, Taipei, Taiwan.

[51] Sivakumar R., Venkitaraman N., Kim T., Lu S., Nandagopal T., Bharghavan V., “The

Corelite QoS architecture: providing a flexible service model with a stateless core”, Research

report, Illinois Mobile Environments Laboratory (TIMELY) research group at the University

of Illinois at Urbana Champaign, 1999.

[52] Kumar A., Hegde M., Anand S.V.R., Bindu B.N., Thirumurthy D., Kherani A.A.,

“Nonintrusive TCP connection admission control for bandwidth management of an Internet

access link”, IEEE Communications Magazine, vol. 38, no. 5, 2000.

http://dx.doi.org/10.1109/35.841841

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 3

www.macrothink.org/npa 67

[53] Mortier R., Pratt I., Clark C., Crosby S., “Implicit admission control”, IEEE Journal on

Selected Areas in Communications, vol. 18, no. 12, 2000.

http://dx.doi.org/10.1109/49.898743

[54]Roberts J.W., “Internet traffic, QoS, and pricing”, Proceedings of the IEEE, vol. 92, no. 9,

2004. http://dx.doi.org/10.1109/JPROC.2004.832959

[55] Kortebi A., Oueslati S., Roberts J.W., “Cross-protect: implicit service differentiation and

admission control”, Proceedings of the IEEE Workshop on High Performance Switching and

Routing, 2004. Arizona, USA.

[56] Oueslati S., Roberts J.W., “A new direction for quality of service: Flow-aware

networking”, Proceedings of the Euro-NGI Conference on Next Generation Internet

Networks, 2005. Rome, Italy, 18-20 April, 2005.

[57] Roberts J.W., Mocci U., Virtamo J. (Eds.), “Broadband network teletraffic. Performance

evaluation and design of broadband multiservice networks. Final report of Action COST 242”,

Lecture Notes in Computer Science (LNCS), vol. 1155, Springer-Verlag, ISBN

3-540-61815-5, 1996.

Copyright Disclaimer

Copyright reserved by the author(s).

This article is an open-access article distributed under the terms and conditions of the

Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

