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Abstract 

TCP elastic traffic is generated by the traditional “data” applications in the Internet, such as 

web browsing, peer-to-peer file sharing, ftp, e-mail and other. These applications are built on 

top of TCP, which provides reliable transfers and adjusts the sending rate to the network 

conditions to achieve the maximum possible throughput, a feature that makes TCP flows to 

be called “elastic”. From the point of view of the network, TCP elastic traffic requires the 

maximum possible throughput above a minimum value, a network service that we call the 

Minimum Throughput Service (MTS). In this paper we survey the main network schemes 

that have been proposed in the Internet to provide this service for TCP elastic traffic, 

classified in two broad groups, the ones that do not use Admission Control (AC) and the ones 

that do use it. For each network scheme we describe the main characteristics of the service 

(whether the minimum throughput can be different or is the same for all flows, whether 

isolation among flows is provided, etc.) and their architecture (the specific traffic 

conditioning, queue disciplines and AC mechanisms used, the required state, the use of 

signaling, etc.). 

Keywords: TCP; elastic traffic; quality of service; admission control; minimum throughput 

service. 
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1. Introduction 

The traditional “data” applications in the Internet (web browsing, peer-to-peer file 

sharing, ftp, e-mail and others) transfer discrete messages or “documents” (a web request, a 

basic web file, an embedded image, an ftp file, an ftp command, etc.), which are partitioned 

into blocks and sent through the network into a sequence of packets or “flows” within TCP 

connections [1, 2, 3]. The users of these applications expect that there is no error in the 

transfer of documents and also that the response time is the smallest possible below a certain 

maximum value [4]. Consequently, document transfers require reliability and the maximum 

possible rate above a minimum value. Therefore TCP flows generated by these applications 

are satisfactorily supported by a network service that provides a minimum throughput to the 

flow and if possible, an extra throughput. We will call this network service the Minimum 

Throughput Service (MTS). 

A network service is provided by a network scheme, which is composed of a 

combination of resource provisioning (link’s capacity, queues, etc.) and mechanisms of 

management, routing, Admission Control (AC), traffic conditioning and queue disciplines. 

Different network schemes have been proposed in the Internet to provide the MTS for TCP 

elastic traffic. For example, the traditional network scheme in the Internet is simply based 

only on First-In-First-Out (FIFO) and Tail Drop queues, there is neither traffic conditioning 

nor AC mechanisms, and provisioning can be whatever. The strength of this scheme is the 

simplicity. However it does not provide isolation (or protection) between flows, i.e., flows 

sending at a higher rate than the fair throughput can damage other well-behaved flows. 

Isolation could be provided using other queue disciplines and/or adding traffic conditioning 

mechanisms, but at the cost of complicating the network scheme. Moreover, in the traditional 

network scheme, when resources in the followed network path are enough to satisfy the 

minimum throughput requirements of all flows, all of them are satisfied, but otherwise, i.e., 

during congestion situations, none of them is satisfied (it is said that this scheme provides the 

best-effort service, a service with no absolute guarantees). Congestion situations can be 

reduced by increasing network resources or by optimizing their use through better routing 

techniques. If the network resources are over-provisioned so that congestion never or rarely 

occurs, then this scheme always provides the desired minimum throughput to all flows (it 

provides a service with absolute guarantees to all flows). Over-provisioning the network 

resources is a common practice in backbone networks, since it allows simple network 

schemes to be used. However, over-provisioning can be difficult to achieve since unexpected 

events may happen (inaccurate traffic forecasts, routing changes, link or router failures, etc.), 

and it can be very inefficient in using resources. If more efficient provisioning is desired, 

another possible option is using network schemes that include an AC mechanism. By using 

AC, when resources in the followed path are enough to satisfy the minimum throughput 

requirements of all flows, all of them are satisfied, and otherwise, i.e., during congestion 

situations, some of them receive the desired minimum throughput (they are “accepted”) and 

the rest do not (they are “rejected” or “blocked”). Again, congestion situations can be reduced 

by increasing network resources or by optimizing their use through better routing techniques, 

but if congestion still occurs, AC achieves efficient use of resources by maximizing the 
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number of satisfied flows. However, using AC complicates the network scheme, and 

therefore a major concern is making the AC as simple as possible. 

In this paper we survey the main network schemes that have been proposed in the 

Internet to provide the MTS for TCP elastic traffic, classified in two broad groups, the ones 

that do not use AC and the ones that do use it. For each network scheme we describe the main 

characteristics of the service (whether the minimum throughput can be different or is the 

same for all flows, whether isolation among flows is provided, etc.) and their architecture (the 

specific traffic conditioning, queue disciplines and AC mechanisms used, the required state, 

the use of signaling, etc.). The paper is organized as follows. In Section 2 we describe in 

detail the characteristics of TCP elastic traffic. Then in Section 3 we review the network 

schemes for TCP elastic traffic without AC, and in Section 4, the ones with AC. Finally, in 

Section 5, we present the conclusions. 

 

2. TCP elastic traffic 

In this section we deal with TCP elastic traffic. Firstly, we discuss the Quality of Service 

(QoS) requirements of “data” applications, starting from the application QoS (i.e., the 

description of the application performance) and then the network QoS (i.e., the description of 

the network performance). Then we give a general definition of the MTS, the network service 

for TCP elastic flows. After that we review the two important functions of TCP: reliability 

through packet retransmission and resource sharing through rate-adaptive algorithms. Finally, 

we describe the characteristics of TCP elastic traffic at different levels, as seen as a set of 

sessions, documents, packets and flows. 

2.1 QoS for elastic traffic 

In “data” applications, the application’s processes transfer discrete (time-independent) 

messages or “documents” (a web request, a basic web file, an embedded image, an ftp file, an 

ftp command, a typed character in telnet, an e-mail message, etc.). The QoS at the application 

layer is described in terms of fidelity to the original documents and in terms of interactivity or 

response time (see Fig. 1). Fidelity refers to the errors in the transferred documents, while the 

definition of the response time varies depending on the application. For example, on the web, 

the response time may be defined as the waiting time between requesting a page (user “click”) 

and visualizing it, which includes the transfer of several documents (the initial request, the 

basic web file, the rest of the requests, some embedded images, etc.); in ftp, the response time 

may be defined as the waiting time between commands and status messages, and especially 

between a file request command and the end of the file transfer; in telnet, the response time 

may be the time between when a character is typed at the client and the visualization of the 

corresponding echo sent by the server. In general, the response time is composed of the 

transfer times of documents and the processing time by the application’s processes (e.g., a 

web server). 

Specifically, users of these applications expect no errors in the transfer of documents, i.e., 

absolute fidelity. Moreover, the smaller the response time the more satisfied the user, but 
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when the response time is too long, impatient users or high layer protocols may interrupt the 

transfer [4]. These aborted transfers imply a waste of resources, which can get even worse if 

the transfer is tried again. This means that there is a maximum response time. Its value 

depends on users’ desires and the specific application. For example (see [5] and references 

therein), a typical user browsing small web pages expects a maximum response time of a few 

seconds (e.g., 5 s); in ftp, where files are typically larger, the maximum response times are 

also larger, and users would be willing to wait in proportion to the file size; or in telnet, the 

echo delays should be smaller than 150 ms. Moreover, some demanding users can want better 

performance than others, e.g., users using the web for business applications (e-commerce, 

online trading, etc.) may require smaller maximum response times than users browsing the 

web for a “normal” use. In conclusion, the users of these applications expect that there is no 

error in the transfer of documents and also that the response time is the smallest possible 

below a certain maximum value. 
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Figure 1. Application QoS and network QoS in elastic applications. 

For transferring an individual document, the above requirements imply that there should 

be no error and the smallest possible transfer time below a maximum value (see Fig. 1). 

Then: 

 Absolute fidelity can be achieved through packet retransmission procedures, as in 

TCP. The TCP source divides the document into blocks (for small documents a single 

block may be enough) and sends a sequence of packets at a certain sending rate, 

which the network delivers to the destination occasionally with delays and some 

losses. From the acknowledgment packets sent back by the destination, the source 

detects and retransmits lost packets until the whole document is received correctly. 

Packet retransmission increases the packet delay and consequently the document 

transfer time, and moreover, it may cause duplication of packets, which are discarded 

by the destination. From the point of view of the network, the decisive QoS parameter 
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is the average receiving rate (averaged in some time interval) or network throughput, 

which includes the duplicates. From the point of view of the application, the average 

receiving rate without including the duplicates (and without the TCP header overhead) 

is more important, known as goodput. The goodput, if averaged in a period equal to 

the transfer time, is simply the document size divided by the transfer time. 

 From the point of view of the network, the requirement about the document transfer 

time turns into a requirement about the throughput, i.e., the document transfer should 

achieve the maximum possible throughput above a minimum value. Note that the 

traditional view is different since the minimum throughput requirement is not 

considered. Traditionally, the utility curve of these applications, which relates user’s 

satisfaction to throughput, is considered to be strictly positive and concave [6]. This 

means that users always benefit by any increase in throughput (i.e., any reduction in 

the document transfer time) but also that users tolerate throughputs tending to zero 

(i.e., unlimited document transfer times). However, because users expect a maximum 

response time, a maximum document transfer time is required, and therefore, a 

minimum throughput is required. In conclusion, the requirement of the smallest 

possible document transfer time below a maximum value implies that the network 

should provide a minimum throughput and if possible, an extra throughput, and also 

that the source should be able to use it, as in TCP. TCP sources use rate-adaptive 

algorithms to achieve the maximum possible throughput while sharing network 

resources fairly between all TCP flows [7]. Since the maximum possible throughput 

changes over time, TCP increases and decreases the sending rate in order to match 

these variations and minimize packet loss. Due to this ability of adjusting the sending 

rate to different network conditions, “data” applications and TCP flows are called 

“elastic”. 

2.2 The Minimum Throughput Service (MTS) 

Elastic flows require the maximum possible throughput above a minimum value from the 

network. Therefore, they are satisfactorily supported by a network service that provides a 

minimum throughput to the flow and if possible, an extra throughput, which we call the 

Minimum Throughput Service (MTS). 

The input traffic profile of the service is defined by an average sending rate equal to the 

desired minimum throughput. Flows’ packets can be considered to be in-profile or out-profile 

by comparing the actual average sending rate of the flow and this input traffic profile (see Fig. 

2). Then: 

 In-profile packets are delivered, i.e., they have no loss (there are no requirements on 

packet delay). This results in the minimum throughput. 

 Out-profile packets can be delivered, i.e., they can have some loss. This depends on 

the remaining network resources, that is, the ones that are not used by the in-profile 

traffic of flows. These remaining network resources are shared between competing 

flows according to a defined sharing policy, e.g., using best-effort sharing, equal or 
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weighted sharing, giving priority to short flows over long flows, or other. This results 

in the extra throughput. 

Finally, the delivery of the service from the provider to the user (and end-user or a 

neighboring domain) should be defined in a Service Level Agreement (SLA). 
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Figure 2. The definition of the Minimum Throughput Service. 

2.3 Reliability and resource sharing in TCP 

TCP is a transport protocol that provides a connection-oriented, reliable and ordered 

service to the application layer, besides performing multiplexing of traffic from different 

application’s processes through the ports. The protocol is standardized in [1] but a large 

number of other RFCs deal with different aspects of TCP. In this subsection we review the 

two important functions of TCP, reliability and resource sharing. 

2.3.1 Reliable delivery in TCP 

The following is a summary of how TCP provides a reliable delivery [1, 2]: 

 Application data is partitioned by the source in blocks of at most MSS (Maximum 

Segment Size) bytes and sent into TCP packets, which carry the (per-byte) sequence 

number of the first byte of the block. 

 The destination only notifies correctly received packets, by sending back 

Acknowledgment (ACK) packets. ACKs are “cumulative”, i.e., they indicate the 

correct reception of all bytes before the carried (per-byte) sequence number (which is 

the sequence number of the next expected byte). If an out-of-order packet arrives, a 

duplicated ACK is sent, and if an in-order packet arrives, the ACK sending may be 

delayed (but one ACK should be sent for at least every second packet arrival and no 

later than 500 ms after the first arrival [8]). Selective ACKs (SACK), which indicate 

non-contiguous blocks of consecutive bytes correctly received, have also been defined 

[9, 10]. 

 TCP uses pipelining together with the sliding window mechanism for flow control. 
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This combination allows the source to have multiple sent but yet-to-be-acknowledged 

packets, with a limit equal to the size of the window (new packets are allowed to be 

sent when ACKs corresponding to previously sent packets are received). The size of 

the window is the number of bytes the destination can accommodate in its receive 

buffer (it is called the receiver’s advertised window), and it is notified at the source 

through ACK packets. Typically the resulting traffic is very bursty since the source 

sends a number of packets continuously (a burst) according to the window and then 

stops and waits for the ACKs before going on. 

 There is a timeout-based mechanism at the source to detect the situations in which no 

ACK is received for a particular packet. When a packet is sent, a timer is initialized to 

a time called retransmit timeout (RTO). 

 A packet is considered to be lost when the corresponding ACK is not received within 

the RTO (RTO expiration), or when three duplicated ACKs of a previous ACK are 

received (this second procedure is called “Fast Retransmit” [11]). A third possible loss 

indication comes from the SACK information, if it is used. 

 When the loss of a packet is detected, a retransmission procedure is triggered. 

Depending on the actual state, only the lost packet is retransmitted (“selective repeat” 

style), or the lost packet and the next packets in the actual window (“go-back-N” 

style). Packet retransmissions can cause duplicated packets that are discarded by the 

destination. 

It is worth commenting the following about the RTO expiration and the Fast Retransmit 

procedure, the two traditional indications of packet loss: 

 RTO should be longer than the round-trip time (RTT) of packets to allow for ACK 

arrivals, but not too much so as not to delay retransmissions. RTT can be measured 

but, since RTT changes in time, it is difficult to estimate its actual “right” value (and 

consequently the “right” RTO). Since it is desired that the timer expires early only on 

rare occasions, RTO is obtained through a conservative calculation based on the 

average and deviation values of measured RTTs [12] (moreover, before the first RTT 

measurement has been made, RTO is set to a value of 3 s). On the other hand, the 

timer is initialized with the actual RTO when a packet is sent or retransmitted. Usually 

there is a single timer related to the oldest unacknowledged packet, and when this 

packet is acknowledged, the timer is reinitialized (with the actual RTO) for the next 

unacknowledged packet. If the timer expires, the actual RTO is doubled (“exponential 

back off”) and the timer is reinitialized. Moreover, TCP implementations use coarse 

grain clocks to measure the RTT and trigger the RTO. This limits the precision of all 

these procedures and imposes a large minimum value on RTO. Moreover RFC 2988 

[12] states, again in a conservative approach to avoid early retransmissions, that 

whenever RTO is computed, if it is less than 1 second then the RTO should be 

rounded up to 1 second. The conclusion is that RTO expiration may take a relatively 

long time. 
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 The Fast Retransmit procedure [11] is expected to detect a packet loss before RTO 

expiration, ideally after a time of about one RTT (sometimes a few RTT), so 

retransmissions are faster. However, since three duplicated ACKs are required, at least 

three later packets have to be sent and correctly received at the destination, and 

therefore, when the window is small, a late RTO expiration is more likely to occur. 

2.3.2 Resource sharing in TCP 

Besides the reliability function we have just described above, another important function 

of TCP is to achieve the maximum possible throughput while sharing network resources 

between TCP flows. This is the reason why TCP sources use rate-adaptive algorithms. 

Resource sharing between TCP flows has the general goal of using the resources fully 

while maintaining a certain “fairness” in the allocations to flows. Fairness can be defined in 

different ways, such as max-min fairness, proportional fairness and other (see [13] for a 

discussion), leading to different allocations. For example, according to the classical fairness 

notion, the so-called max-min fairness, in a simple scenario of N flows sharing a single link 

of capacity C, the fair rate for each flow is equal to C/N. In the case of any network topology, 

this does not simply mean allocating the same share to each flow in a link-by-link basis, since 

this may not lead to full utilization. Then [14]: 

 Max-min fairness is achieved when the rates allocated to flows are made as equal and 

large as possible, or more formally, when an increase in any allocated rate is at the 

cost of a decrease in some already smaller rate. 

 Or alternatively, when each flow has a “bottleneck” link, i.e., a link that is fully 

utilized, and where the flow’s allocated rate is equal to or larger than the rates 

allocated to the rest of the flows using this link. 

Another notion of fairness consists in minimizing the number of actual flows by giving 

priority to short flows over long flows. This has been shown to reduce the transfer time of 

short documents without hurting the performance for long flows, when considering heavy 

tailed document size distributions [15, 16]. 

Another point apart from the fairness type is that the fair rate of a flow changes during its 

lifetime. This is because the number of flows in the network changes in time, due to new 

arrivals and departures of finished transfers. Therefore, the average allocated rate of a flow 

(and the corresponding document transfer time) depends on two issues, the type of fairness 

and the variations in the number of flows [15]. 

The fair rate is not explicitly indicated to TCP sources. Instead sources use a probing 

method that reacts according to binary indications from the network, i.e., whether the sending 

rate is below the fair rate (“no congestion”) or the opposite (“congestion”). The classical 

congestion indication is packet loss. TCP sources use rate-adaptive algorithms (called 

congestion control algorithms) that increase the sending rate while there is no congestion, and 

decrease the sending rate when congestion occurs, oscillating around the fair rate (and 

adapting to changes in its value). The amplitude of the oscillations (which should be limited 
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to avoid inefficiencies in link utilization) as well as the rate of convergence and adaptation to 

changes (packet loss should be minimized to reduce retransmissions) depend on the specific 

rate-adaptive algorithms. Moreover, the network does not enforce the fair rate on the TCP 

flow, and therefore the fairness in resource sharing is achieved relying on all TCP sources 

implementing the same algorithms. As a consequence, the type of fairness also depends on 

the specific algorithms used by all sources [13]. 

As mentioned above, the classical congestion indication from the network is packet loss, 

but others are possible. The following is a more complete summary of possible congestion 

indications: 

 Packet loss detected from Fast Retransmit. This is considered a fast detection method. 

It does not work well when the window size is small. 

 Packet loss detected from RTO expiration. It may take a relatively long time in 

comparison to Fast Retransmit. This is considered to be an indication of severe 

congestion, because it means that Fast Retransmit has not detected the packet loss 

before. 

 Packet loss detected from SACK information. 

 An increase in RTT. Before queues overflow (and packets are dropped), the RTT of 

packets increases, and this can be used by TCP sources to react in advance and reduce 

losses, with the consequent improvement in performance. 

 Explicit Congestion Notification (ECN). With ECN [17], routers can provide an 

explicit binary indication of congestion to end-nodes before packet loss occurs. Two 

bits in the IP header are used: one for indicating the congestion and another for 

indicating the ECN capability. By using Active Queue Management mechanisms such 

as Random Early Detection (RED) [18], routers set the congestion indication bit in 

packets when the queue occupancy is high enough but before the queue overflows 

(and a packet has to be dropped). TCP uses ECN in the following way: when the 

destination TCP receives a packet with the congestion indication bit set, it echoes 

back this bit (through one dedicated flag of the TCP header) in its next ACK to the 

TCP source, which then reacts to congestion as if a single packet loss had occurred. 

With ECN, TCP performance improves because losses are reduced. 

TCP sources vary the sending rate by controlling the window size, because the average 

sending rate (in RTT) is roughly equal to the window size divided by RTT (this comes from 

considering that TCP sends a burst of packets limited by the window size and then waits for 

ACKs before going on, which arrive after one RTT). This results in the so called congestion 

window (cwnd), which vary according to the TCP congestion control algorithms. The flow 

control’s window is then the minimum value between the congestion window and the 

receiver’s advertised window (i.e., it can vary from 1 (MSS) to the actual receiver’s 

advertised window). 

TCP congestion control algorithms have evolved over time, resulting in the so-called 
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“TCP versions” (see [2] for a general view). The first one, TCP Tahoe [7], defined the 

following mechanisms for increasing the congestion window (later standardized in [11]): 

 Slow Start. The congestion window is set to a small value (less than or equal to 2 

(MSS), typically 1), and then it is increased by 1 (MSS) after each new (i.e., 

non-duplicated) ACK is received (cwnd = cwnd+1). If the receiver acknowledges 

every packet, cwnd is doubled each RTT (a multiplicative increase by 2). When the 

congestion window reaches a value called “Slow Start threshold” (ssthresh), it 

continues increasing according to Congestion Avoidance. 

 Congestion Avoidance. The congestion window is increased as cwnd = 

cwnd+(MSS·MSS)/cwnd, after each new ACK is received. If the receiver 

acknowledges every packet, cwnd is increased by approximately 1 (MSS) every time 

a full window is acknowledged, i.e., it is increased by 1 (MSS) each RTT (an additive 

increase by 1). 

When a packet loss is detected, through Fast Retransmit or RTO expiration, cwnd is set 

to 1 (MSS), entering Slow Start, and ssthresh is set to FlightSize/2 (but no less than 2 MSS), 

where FlightSize is the amount of data that has been sent but not yet acknowledged. A 

“go-back-N” retransmission procedure is used. Therefore, TCP Tahoe starts from “one” and 

performs fast probing through Slow Start and slow probing through Congestion Avoidance. 

When a packet loss is detected, it starts again from “one”, and ssthresh (which initially can be 

arbitrarily large, e.g., the receiver’s advertised window) is adjusted dynamically so that the 

next slow probing is performed as the congestion window is near the value at which a loss 

previously occurred. Note also that if delayed ACKs are used, the congestion window is 

increased at a lower rate since less ACKs are sent. 

The second version, TCP Reno [11], differs from the first one only in terms of its 

behavior after a Fast Retransmit, which is considered an indication of moderate congestion. 

The Fast Recovery algorithm was introduced: 

 When a packet loss is detected through Fast Retransmit, ssthresh is set to FlightSize/2 

(but no less than 2 MSS), and cwnd is set to ssthresh+3. The lost packet is 

retransmitted, and if allowed by the congestion window, new packets are sent (i.e., 

“selective repeat” style). For each additional duplicated ACK, cwnd is increased by 1 

(MSS). When a new ACK is received, cwnd is set to the actual ssthresh (i.e., the 

previous FlightSize/2, a multiplicative decrease by 2), and it enters Congestion 

Avoidance. 

However, it was shown that this procedure, by requiring every packet loss to be 

retransmitted strictly based on Fast Retransmit, may fail to recover from multiple losses in a 

single flight of packets, which leads to RTO expiration for the other lost packets. An 

improvement of Fast Recovery was introduced in a new version, TCP NewReno [19], which 

was extensively used. Basically, during Fast Recovery, “partial” ACKs (new ACKs not 

covering the highest sequence number sent) and “full” ACKs are distinguished: if a partial 

ACK is received, the next corresponding packet is considered to be lost and retransmitted, 
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and if a “full” ACK is received, then Fast Recovery ends. Another way of dealing with the 

problem of multiple losses in a single flight of packets is using the SACK option, since its 

information can be used to selectively retransmit the lost packets. A modified TCP Reno with 

SACK was shown to outperform TCP NewReno in [20], especially when the number of 

losses is large. The SACK option is widely deployed and straightforward implementations 

have been proposed [21]. 

We have just seen above the classical increases and decreases of the TCP sending rate to 

achieve the fair rate (see Fig. 3): when losses do not occur and when in Congestion 

Avoidance, the congestion window is additively increased by one (cwnd+1) each RTT, and 

when losses occur and are detected through Fast Retransmit and recovered through Fast 

Recovery, the congestion window is multiplicatively decreased by two (cwnd/2). This is 

known as a particular case of the more general “Additive Increase and Multiplicative 

Decrease (AIMD)” control behavior. 
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Figure 3. The ideal AIMD (Additive Increase Multiplicative Decrease) behavior of the TCP congestion window, 

after an initial Slow Start phase. 

AIMD was studied in a single link in [22], which showed that it converges to fair 

resource sharing. Although it is often stated that AIMD rate variations provide max-min 

fairness in a general network, some authors (e.g., [13]) shown that they tend to provide rather 

another type of fairness called “proportional fairness” (which produces smaller allocations for 

flows passing through more hops to the advantage of greater overall throughput). Moreover, 

fairness in resource sharing between TCP flows depends strongly on the RTT and time 

duration of flows: 

 Flows with large RTT achieve smaller throughput than flows with small RTT. This is 

because the value of the additive increase of the sending rate (the congestion window) 

is constant and independent of RTT, and it does not occur at fixed time intervals but in 

time periods of RTT due to the necessary feedback delay [23]. Therefore, the sending 

rate increases more quickly for flows with a smaller RTT, and achieves higher 
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throughput. This happens with long flows, which are stable in Congestion Avoidance 

under AIMD control. 

 Short flows tend to achieve smaller throughput than long flows. This is because short 

flows spend most of their lifetime in Slow Start, while long flows spend most of their 

lifetime in Congestion Avoidance, and flows in the Slow Start phase achieve smaller 

throughput than flows in the Congestion Avoidance phase. Firstly, flows during Slow 

Start double the sending rate each RTT (until a loss is detected), but meanwhile they 

achieve a lower throughput since it is necessary to start conservative from a small 

value. Secondly, during Slow Start the congestion window may be small, and if losses 

occur it is probable that they will be detected through RTO expiration and not through 

Fast Retransmit (as it has been observed in measurements, e.g., in [24]). The 

expiration may take a long time (RTO is usually large, since there are just a few 

samples of RTT at the beginning, a conservatively value is used), and moreover, the 

congestion window is severely decreased due to starting again from a small value in 

Slow Start. Thirdly, flows in Congestion Avoidance have larger congestion window 

and are less sensitive to losses (usually detected through Fast Retransmit), and are 

stable under AIMD control around the fair rate. 

Finally it is worth commenting that the evolution of the TCP congestion control 

algorithms does not end with the classical algorithms we have seen above, and that there have 

been many other modifications and proposals for “new” TCPs in order to improve its 

performance (adding ECN to IP [17], using Active Queue Management such as RED [18], 

TCP Vegas [25], Fast TCP [26], TCP Westwood [27], XCP [28], TCP pacing schemes [29], 

TCP ACK pacing schemes [30], HighSpeed TCP [31], scalable TCP [32], BIC-TCP [33], 

Compound TCP [34], TCP in wireless networks [35], etc.; a performance comparison can be 

found in [36], and numerous references in [37]). 

2.4 Characteristics of TCP elastic traffic 

Traditional “data” applications in the Internet generate the majority of Internet traffic. 

Their traffic can be described at different levels by considering different entities as a set of 

sessions, documents, packets and flows. The notion of session generally refers to a time 

period of “continuous” and “related” user activity, so that user sessions can be considered 

statistically independent. A session has a starting time and duration, and is composed of a 

succession of documents. Documents are generated within a session, and are characterized by 

its sending time and its size. Each document results in a sequence of packets, each packet is 

characterized by its sending time and length. A flow is a sequence of “related” packets that 

are “close” in time, which can correspond to the transfer of a single document, several 

documents or an entire session. It is characterized by its starting time, duration, traffic 

parameters such as the average rate, peak rate, etc., document size, and others. The sequence 

of packets corresponding to a document transfer (which includes the retransmitted packets) is 

typically very bursty (the TCP source sends a number of packets continuously – a burst – 

according to the actual window and then stops and waits for the ACKs before going on) and 

has a variable average rate (due to the TCP rate-adaptive algorithms). Moreover, besides data 
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packets, control packets for connection management and error correction are also sent. 

The structure of sessions, in terms of documents, their interarrival times and sizes, and 

the TCP connections used, depends on the application. The following is a qualitative 

description of some applications: 

 During a web session in a server, the user downloads a set of web pages, each 

composed of several parts called “objects”, usually a “basic” file and several 

embedded images (referenced in the basic file). A user “click” results in the basic file 

being requested, and once it is received, the client requests the rest of the objects of 

the web page. A TCP connection can be of two types, a “non-persistent” connection, 

when it is closed by the server after finishing the transfer of an object, or a 

“persistent” connection, when it remains open and is closed by the client or the server 

usually when there is inactivity during a given timeout interval. The set of documents 

may be transferred within several non-persistent TCP connections (one connection per 

document, opened sequentially or in parallel), or within a single or several persistent 

TCP connections (each one with sequential pairs of request-reply, or with “pipelined” 

requests, that is, several requests one after the other without waiting for each reply). 

The size of web requests usually fits in a single TCP packet, while the size of replies 

is extremely variable, since they can range from small basic files to very large files. 

The web also creates document interarrival times that are very variable. For example, 

very short interarrival times occur when clients open parallel TCP connections to 

transfer several embedded images of a web page; short interarrival times come from 

users browsing and reading different web pages; users taking a long break results in 

long interarrival times. 

 During an ftp session, the commands sent by the client and the corresponding status 

messages from the server are transferred within a single TCP connection (for 

“control”). A separate TCP connection (for “data”) is established each time the user 

wants to transfer some data, for example, listing a directory or getting a file (two 

operations that usually occur close in time). Control commands are small, while the 

size of the files is extremely variable. 

 During a telnet session, there is a single TCP connection, in which each character 

being typed by the user at the client is sent to the server, which echoes them back, as 

well as sending the responses to the commands. The size of the typed characters is 

obviously very small and their interarrival times are limited by the typing speed of the 

user. 

Measuring traffic at the session or flow level may be difficult because, as we have just 

seen, the relation between these traffic entities and TCP connections is not obvious. In some 

cases (e.g., in ftp or telnet), a session can be simply equated to an entire single TCP 

connection, initiated by the connection request packets and ended by the corresponding 

release packets. On other occasions (e.g., in web), a session may include several and related 

TCP connections (persistent or non-persistent) and considered to be finished when there is no 

user activity during a given timeout period. Similarly, a flow can correspond to a sequence of 
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packets within a single TCP connection, within several connections or an entire TCP 

connection. Usually a flow is identified by a 5-tuple in IPv4 (protocol, source and destination 

IP addresses and ports), initiated when the first packet arrives and finished when there are no 

more packets during a given timeout period. Another option is to equate a flow to an entire 

TCP connection. 

Files sizes in the web have shown to exhibit a distribution with a heavy tail [38]. This 

means that there is a high variability in sizes, and that most web files are small but a few of 

them are very large (and consequently, the same is valid for the lifetime of flows, when each 

one corresponds to a single file: most of the flows are short and a few of them are very long). 

A reasonable fit to the form of the heavy tail is provided by the Pareto distribution. 

 

3. Network schemes for TCP elastic traffic without admission control 

In this section we review the main network schemes that have been proposed in the 

Internet to provide a network service for TCP elastic traffic, when the mechanisms used are 

basically traffic conditioning and/or queue disciplines, and AC is not considered. In 

consequence, when resources in the followed network path are enough to satisfy the 

minimum throughput requirements of all flows, all of them are satisfied; otherwise, i.e., 

during congestion situations, none of them is satisfied. We say that the network service has a 

relative guarantee, since the throughput received by a flow is defined as a function of the 

throughput received by other flows. For example, in a fair throughput service, the goal is to 

provide a throughput equal to the fair rate of the bottleneck link, i.e., the link’s capacity 

divided by the number of present flows (in fact, the max-min fairness, see Subsection 2.3); or 

in the weighted version, the proportional throughput service, flows’ throughputs and flows’ 

weights are proportional, and therefore different throughputs can be provided. Congestion 

situations can be reduced by increasing network resources or by optimizing their use through 

better routing techniques. If the network resources are over-provisioned so that congestion 

never or rarely occurs, then these schemes always provide the desired minimum throughput 

to all flows (they provide a service with absolute guarantees to all flows). 

A possible scheme would be using Fair Queuing (FQ) or Weighted Fair Queuing (WFQ) 

scheduling at flow level in all routers. With FQ each flow would receive the max-min fair 

rate, while with WFQ they would receive the weighted max-min fair rate (and therefore 

throughput differentiation according to flows’ weights). Isolation between flows would be 

provided by queues without needing specific traffic conditioning mechanisms. However, this 

scheme would be too complex because it would require per-flow state and per-flow 

management in all routers. For each arriving packet, the router would need to classify the 

packet into a flow, update some per-flow variables and perform per-flow operations. Per-flow 

state should be established and updated explicitly through per-flow signaling (this would 

result in a high overhead given that most elastic flows are short – see Subsection 2.4), or 

implicitly through flows’ data packets and timeout procedures. 

In the next subsections we review the following set of schemes for TCP elastic traffic 
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without AC (see Fig. 4): the “traditional” scheme in the Internet with FIFO and Tail Drop 

queues, a set of schemes based on packet classes, the scheme based on Core-stateless Fair 

Queuing and finally the User-Share Differentiation scheme. For each of them, we describe 

the main characteristics of the service, that is, whether they provide the same or different 

throughputs, and whether they provide isolation between flows (so that flows sending more 

traffic than their allocated throughput do not damage well-behaved flows that do send 

according to their allocated throughput), and also the architecture of the scheme, that is, the 

specific mechanisms used, the required state and the use of signaling. 

without AC

with AC

throughput service’s scheme in Corelite

implicit AC for TCP connections 

elastic traffic’s scheme in Flow-Aware Networking

“traditional” scheme

User-Share Differentiation scheme

schemes based on packet classes

Core-Stateless Fair Queuing based scheme

 

Figure 4. Main network schemes proposed in the Internet to provide the MTS for TCP elastic traffic. 

 

3.1 The “traditional” scheme 

The “traditional” scheme in the Internet is only based on FIFO and Tail Drop queues. 

Traffic conditioning mechanisms are not used. All packets receive the same treatment and the 

service provided is best-effort. The main advantage of the scheme is the simplicity. However, 

it does not provide any isolation between flows, and in the case of traffic overload, flows 

injecting more traffic “steal” resources from the rest (the output average rate is proportional 

to the input average rate). 

The combination of this scheme and TCP rate-adaptive algorithms (see Subsection 2.3) 

aims to provide a fair throughput service. The goal is to provide a throughput equal to the fair 

rate of the bottleneck link, i.e., the link’s capacity divided by the number of present flows, 

although the effective resource sharing may exhibit unfairness in some situations (flows with 

large RTT versus flows with small RTT, or short flows versus long flows). An obvious 

consequence is that it is not possible to provide different throughputs to different TCP flows. 

Moreover, the fair throughput service is achieved by TCP sources through a probing method, 
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increasing the sending rate while there is no congestion (e.g., no packet loss) and decreasing 

it when congestion occurs, oscillating around the fair rate. Therefore, this approach relies on 

cooperation between sources that implement the same algorithms. An advantage is that no 

support from the network is needed, since the fair rate is not indicated to the TCP sources nor 

enforced. However, some sources may not react against congestion (e.g., real-time sources 

that do not decrease the sending rate) or react in a different way, so that well-behaved TCP 

sources may receive smaller throughput (i.e., they are not protected). 

An enhancement of the “traditional” scheme is achieved by replacing Tail Drop by an 

Active Queue Management such as RED [18, 39]. One of the main goals of RED is to avoid 

the so-called “TCP global synchronization problem”, which arises from the interaction 

between TCP rate-adaptive algorithms and Tail Drop, in the following way: when a sequence 

of packets arrives and the queue occupancy is high, multiple packets may be discarded; flows 

experiencing this packet loss will decrease the sending rate at a similar time, and after a while, 

when losses do not occur, they will increase the sending rate at a similar time, and so on, 

becoming “synchronized”. Moreover, it is likely that the number of losses in a single flight of 

packets of a flow is large, resulting in RTO expiration (a severe congestion indication), the 

flow entering Slow Start, and a strong reduction in the sending rate. The synchronized 

behavior together with the burstiness of TCP traffic leads to poor link utilization and low 

aggregated throughput. RED works in the following way: 

 It measures the queue’s average occupancy, avg, by using a low-pass filter or 

exponentially weighted moving average of the instantaneous queue occupancy. 

 It discards packets before the queue is full according to a dropping probability Pdrop 

that depends on the average occupancy avg and two thresholds, min and max (see Fig. 

5): when avg < min, no packet is dropped; when max < avg < min, the packet 

dropping probability increases linearly with avg, from probability 0 to Pmax; when 

avg > max, all packets are dropped. Therefore, the dropping probability of the arriving 

packet is higher as avg increases. 

avgmin max

Pmax

Pdrop

1

 

Figure 5. Dropping probability as a function of the queue’s average occupancy in RED. 

Since RED uses an average occupancy, short bursts of packets (sort-term congestion) are 

filtered, and thus ignored, without inducing packet loss. However, when bursts are longer 

(long-term congestion), the average occupancy increases and packets start to be discarded to 

indicate the congestion to sources. Note that RED detects incipient and light congestion and 
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provides an early indication: before several packets are discarded (indication of severe 

congestion), it is likely that a single packet in a flight of packets of a flow is discarded, 

resulting in Fast Retransmit, the flow entering Congestion Avoidance, and a weak reduction 

of the sending rate. The probabilistic discarding avoids global synchronization, since only 

some of the sources will experience packet loss and decrease the sending rate. When 

congestion is stronger, the indication to sources is much more frequent (Pdrop increases with 

avg). Moreover, the probabilistic packet discarding will tend to affect flows causing the 

congestion more (the ones that receive higher throughput), since most of the arriving packets 

will belong to them. Finally, note that when RED is used together with ECN [17], packets are 

marked instead of being discarded, on the assumption that sources will react in the same way 

as if a packet were lost. Numerous references about RED can be found in [37]. 

3.2 Schemes based on packet classes 

These schemes are based on packet classes in a similar way to the Differentiated Services 

(Diffserv) architecture [40]. Diffserv networks are based on packet classes, i.e., flows’ 

packets are assigned to a small number of classes at the ingress (a mark that identifies the 

class is written in the packet’s header), and queue disciplines in the core apply a different 

treatment to packets belonging to different classes. The mechanisms used in these schemes 

are the following: 

 Traffic conditioning mechanisms at the network ingress assign each flow’s packet to a 

class and write a mark in the packet’s header that identifies the class (the number of 

classes is small), according to an agreed traffic profile. Alternatively, the packets may 

arrive at the network ingress already marked (e.g., previously by sources), and then 

traffic conditioning at the network ingress checks and enforces the agreed traffic 

profile (out-profile packets can be remarked or even discarded). 

 Queue disciplines in the network core are based on classes, i.e., they apply a different 

treatment to packets belonging to different classes. 

Per-flow state is only kept at the edge while the core remains simple and highly scalable. 

The use of traffic conditioning and class-based queues can allow isolation between flows and 

different throughput to different flows to be provided, as well as the possibility to coexist 

with other different network services. 

3.2.1 The in and out scheme of the Assured Service 

The Assured Service, defined within the so-called “allocated-capacity” framework in 

[41], is able to provide different throughputs to flows from different users during congestion. 

Moreover, it protects TCP flows against non-responsive sources. The proposed scheme uses 

two packet classes, called in and out, with different discarding priorities (see Fig. 6): 

 There is an input traffic profile (for each user) that defines the flow’s desired 

minimum throughput rmin. The average sending rate of the flow r is measured and 

compared with rmin in order to classify each packet as an in-profile or out-profile. The 

goal of this classification is to obtain a sequence of in-profile packets with a rate equal 
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to the minimum throughput, specifically, min(r, rmin), and a sequence of out-profile 

packets with a rate equal to the exceeding traffic above it, i.e., min(0, r- rmin). Packets 

are marked accordingly as in or out. 

 There is a single FIFO queue (to maintain packet ordering) with priority discarding so 

that if a packet has to be discarded, the out class has a higher discarding priority than 

the in class (this behavior was generalized and standardized by the IETF Diffserv 

Working Group in the definition of the AF PHB [42]). 

As a consequence, in packets have a higher assurance of delivery than out packets. The 

desired minimum throughput is provided when the aggregated in traffic does not cause an 

overload in any of the links of the network path. When an overload occurs, the throughput 

provided to each flow is a share of the bottleneck link’s capacity that is proportional to (and 

smaller than) the desired one. Therefore, the difference between the provided throughputs 

during congestion comes from the different desired throughputs of the input traffic profile of 

flows (users). 

out-profile: mark out

r

t

rmin

in-profile: mark in rb bps

in, out

network ingress:

packet marking(e.g., TSW)

network nodes: 

class-based queue disciplines (e.g, RIO)
+

 

Figure 6. The in and out scheme of the Assured Service. 

 

The following algorithms were proposed in [41] to implement this scheme (similar 

algorithms were also proposed in [43]): 

 The flow’s average rate is estimated using the TSW (Time-Sliding Window) 

algorithm, and the marker is based on a probabilistic function. 

 The priority discarding in queues uses the RIO (RED with In and Out bits) algorithm. 

TSW provides a smooth estimate of the TCP sending rate in a way suitable to the 

burstiness of TCP traffic. The average sending rate avg_rate is estimated upon each packet 

arrival and over the last period of time (or window), which considers a “past history” equal to 

the so-called win_length parameter. The algorithm is simple since the only state variables are 

the arrival time of the previous packet and the previous value of avg_rate. A difficulty is that 

the recommended value for win_length is the flow’s RTT, which is usually not known at the 

network ingress. Therefore, a fixed value has to be used and the average rate is not optimally 

estimated. A proposed solution is to implement this algorithm and the marking in the TCP 

source itself, which has an estimate of the actual RTT (in this case, the network would then 

check and enforce the agreed traffic profile). 
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The marker is based on a probabilistic function. Once avg_rate for the arriving packet is 

calculated, the marker decides whether the packet is in or out in the following way: if 

avg_rate is smaller than the desired throughput RT, the packet is in; otherwise, the packet is 

out with probability Po = (avg_rate−RT)/avg_rate or in with probability 1−Po (a variant is 

using 1.33·RT instead of RT as a threshold). The probabilistic function is used to space out 

packets and to reduce the probability of consecutive drops in a single flight of packets, which 

could lead TCP to enter Slow Start and severely reduce the sending rate. The design of TCP 

markers has been a subject of research and there have been more proposals (e.g., [43, 44]). 

The RIO algorithm extends RED to work with two classes. Two sets of parameters are 

used and two separate average buffer occupancy calculations are tracked, one only for in 

packets and another one for all (in plus out) packets (see Fig. 7): 

 The dropping probability of in packets depends only on the buffer occupancy of in 

packets avgin, with parameters minin, maxin, Pmaxin. 

 The dropping probability of out packets depends on the buffer occupancy of in plus 

out packets avgtot, with parameters mintot, maxtot, Pmaxout. 

avginminin maxin

Pmaxin

Pdrop in
1

avgtotmintot maxtot

Pmaxout

Pdrop out
1

 

Figure 7. Dropping probability as a function of the queue’s average occupancy in RIO. 

RIO’s objective is to discriminate out packets from in packets: when there is incipient 

congestion, RIO first drops some out packets; if the congestion persists, RIO drops all the out 

packets; finally, in packets are only dropped when the router is flooded with in packets. 

Therefore, RIO parameters have to be chosen carefully (e.g., 40, 70, 0.02 for in and 10, 30, 

0.2 for out, are one of the choices in [41]). 

3.2.2 TCP-state based differentiation 

This scheme [5] uses three packet classes, called high, med and low, with different 

discarding priorities (following the AF PHB definition [42]): 
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 Packets are marked in the host by TCP sources as high, med or low. The marking 

algorithm depends on the TCP state, i.e., on the actual value of the window and on the 

identification of some “important” packets, as we describe below in more detail. 

 An agreed traffic profile specifies the total aggregated rate of high and med packets 

per user, in the form of two token bucket profiles. At the network ingress, traffic 

conditioning mechanisms enforce this traffic profile, and out-profile packets can be 

remarked to a lower priority or even discarded. Note that traffic conditioning is made 

over the user’s flow aggregate, and therefore it is in the best interest of sources to 

mark packets in conformance with the agreed traffic profiles. 

 There is a single FIFO queue (to maintain packet ordering) with priority discarding so 

that if a packet has to be discarded, the low class has the highest discarding priority, 

the med class the medium discarding priority, and the high class the lowest discarding 

priority. The algorithm in queues is an extension of RED for three classes (like RIO is 

an extension of RED for two classes). 

The marking algorithm at the TCP source considers two cases: 

 In the first case, the marking is based on the actual value of the window (since the 

average sending rate – in RTT – is roughly equal to the window size divided by RTT). 

The algorithm considers that if a connection is performing well and the window is 

high, there is no need to protect its packets and it is better to use the high marks to 

improve the performance of other connections that need it; if then the connection 

suffers packet drops and its window is reduced, marking its packets as high can help it 

to recover. Following these ideas, the window-based marking compares the actual 

congestion window cwnd with two thresholds, highthresh and medthresh, in the following 

way: if cwnd  highthresh, packets are marked as high, if highthresh < cwnd  medthresh, 

packets are marked as med, and if cwnd > medthresh, packets are marked as low. 

 In the second case, the algorithm identifies some “special” packets, the ones that are 

more important for the stability of the TCP congestion control algorithms, and marks 

them as high. Specifically, these packets are the connection establishment packets 

(important for the initial RTT measurement and RTO calculation), the data packets 

sent when the window is small (since TCP is more vulnerable to losses), and the data 

packets retransmitted after an RTO expiration or Fast Retransmit (since their loss 

could lead to RTO expiration). Note that some of these packets could also be marked 

as high by the window-based marking. 

This scheme compensates for the unfairness experienced by short TCP flows. As we have 

seen in Subsection 2.3, short flows tend to achieve smaller throughput than long flows 

because their initial window is usually small and because they are more vulnerable to losses. 

This scheme identifies these situations and prioritizes packets to reduce losses; therefore, it 

tends to provide a fair throughput service, i.e., to share network resources equally between 

flows. Moreover, note that traffic conditioning mechanisms at the network ingress provides 

isolation between flows from different users. 
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Throughput differentiation is achieved by using different marking thresholds for different 

flows. The differentiation can be at the application level (e.g., higher thresholds for web than 

for ftp), at the user level (e.g., demanding users have higher thresholds than “normal” users), 

or even for different transferred documents (e.g., higher thresholds for transferring basic web 

files than for the rest of the web page objects). 

3.2.3 Preferential treatment to short TCP flows 

These schemes [45, 46] give preferential treatment to short flows over long flows by 

using different packet classes. The aim is two-fold: to compensate for the unfairness 

experienced by short flows, which tends to get less than their fair share when they compete 

for the bottleneck link’s capacity; and giving priority to short flows, which has been shown to 

reduce the transfer time of short documents without hurting the performance for long flows, 

when considering heavy tailed document size distributions (see Subsection 2.3). 

Neither scheme provides isolation between flows. Two packet classes are used, e.g., 

called short and long: 

 At the network ingress, the first packets of each flow are marked as short and the rest 

as long, according to a defined threshold. 

 Short packets are preferentially treated over long packets in queues. 

Note that the proposed short and long marking does not result in a classification between 

short and long flows, since the first packets of long flows are also marked as short. However, 

this is a desired feature, since in fact the unfairness is not between short and long flows but 

rather between the first packets of flows and the rest of the packets (i.e., the first packets of 

long flows experience the same problems). Therefore, the preferential treatment to the short 

class helps all flows. 

The preferential treatment in queues in [45] is based on RIO, i.e., short packets are 

discarded less than long packets, so that they experience fewer losses. The preferential 

treatment in [46] is based on priority queuing, i.e., short packets are served before long 

packets, so that they experience fewer losses and smaller delays (also note that packet 

ordering in a flow is still maintained). 

3.3 Core-Stateless Fair Queuing (CSFQ) based scheme 

This scheme [47] provides a fair throughput service as well as isolation between flows. 

Moreover, by assigning a weight to the flow, it can be extended to provide different 

throughputs to different flows, proportionally to the flows’ weights. 

The scheme uses the CSFQ algorithm in queues, which closely emulates the behavior of 

the FQ algorithm, but without needing a per-flow state. Instead, per-flow state is carried by 

packets using the Dynamic Packet State (DPS) technique: the state variables are encoded in 

the packet’s header and then are used and modified by the queue disciplines. In this scheme 

the state is the flow’s rate: 

 The incoming rate of each flow is estimated at the network ingress and a label is 
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written on its packets carrying the value of this rate. 

 The queue discipline uses FIFO together with the CSFQ algorithm, which 

probabilistically discards packets so that each flow receives the fair rate in the link. 

CSFQ only uses the packet’s label and measurements over aggregates. 

The ingress router, upon each packet arrival, classifies the packet into a flow, updates the 

estimation of the flow’s rate r, and labels the packet with r. This estimation is based on an 

exponential weighted moving average of the instantaneous rate (with a weight that depends 

on the packet inter-arrival time). 

CSFQ in all routers works as follows: 

 Each router periodically estimates the fair rate f in the link. 

 Upon receiving a packet labeled with incoming rate r, the router drops the packet with 

probability Pdrop = max[0, (r-f)/r]. Therefore, if r  f, all packets of the flow are 

forwarded and the flow’s output rate is kept to r; if r > f, some packets of the flow are 

probabilistically discarded (hopefully, (r-f)/r is the fraction of discarded packets), so 

that the output rate is approximately decreased to f. In any case, when a packet is 

forwarded, the router updates the packet’s label with the flow’s output rate (the 

minimum between f and the incoming r), which is the new flow’s arrival rate for the 

next router. 

The fair rate f in the link is estimated at certain times. The router continuously measures 

the aggregated incoming rate A and the aggregated forwarded rate F (both with the same 

procedure used for the flow’s incoming rate at the ingress) in the link of capacity C. If there is 

no congestion (A < C), f is chosen as the maximum flow’s rate between the flows that 

traverse the link, i.e., the maximum packet label observed in that time (and therefore the 

discarding probability is 0 for all packets of all flows). If there is congestion (A  C), a 

heuristic and iterative algorithm varies f (and therefore Pdrop and F) by a factor C/F until it 

converges, i.e., until F matches C. 

This scheme provides a fair throughput service and isolation between flows without 

needing a per-flow state in the core. However, it requires the state to be processed and 

updated for each packet in each router, and the state in the packet’s header to be encoded. 

3.4 User-Share Differentiation (USD) scheme 

This scheme [48, 49] is able to provide different throughputs to flows from different 

users proportionally to some agreed users’ weights, but in an aggregated way. Moreover, it 

provides isolation between flows from different users. The basic points of the USD scheme 

are the following: 

 Each user has a weight (defined in a user-provider agreement), which controls 

resource sharing between users for both its sending and its receiving traffic. 

 The queue discipline uses the WFQ algorithm or similar, which shares the link’s 

capacity fairly between the traffic from different users according to the weights. 
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The user is chosen as the basic unit that defines traffic control granularity, so that all 

traffic that has originated from a user or destined to a user is aggregated within the network 

(within the traffic of a single user it is up to the user to decide how the service is shared 

internally). The state needed inside the network is reduced since it is not flow-based but 

rather user based. In each router there is a table with the user identifier and its associated 

weight (the user identifier can be the IP address of an end-user, the network prefix for a 

network, or a set of network prefixes for a group of networks). The per-user state makes the 

scheme highly scalable in the hierarchical structure of recursive user-provider relationships of 

the Internet. 

The user identifier and its corresponding weight could be distributed to routers inside the 

network through a network management protocol. For each arriving packet, the router looks 

up the weight of the sending user and the weight of the receiving user in the table, since both 

weights control the sharing. This conflict is solved by making the WFQ scheduler use the 

minimum of the two weights. 

Isolation between traffic of active users is provided by WFQ without needing specific 

traffic conditioning mechanisms at the network ingress. If one user transmits more than its 

actual allocated throughput in a given link, it will cause its own packets to be dropped in the 

queues. 

 

4. Network schemes for TCP elastic traffic with admission control 

In this section we review the main network schemes that have been proposed in the 

Internet to provide a network service for TCP elastic traffic when the mechanisms used are 

basically traffic conditioning, queue disciplines and AC. Therefore, when resources in the 

followed network path are enough to satisfy the minimum throughput requirements of all 

flows, all of them are satisfied; otherwise, i.e., during congestion situations, some of them 

receive the minimum throughput (they are “accepted”) and the rest do not receive it (they are 

“rejected” or “blocked”). Congestion situations can be reduced by increasing network 

resources or by optimizing their use through better routing techniques. The blocking rate 

depends on the behavior of users’ demands, the chosen resource provisioning, the routing 

techniques used, and the capability of the AC mechanism to maximize the number of satisfied 

flows. If nevertheless, congestion occurs, using AC achieves an efficient use of network 

resources by maximizing the number of satisfied flows, although it complicates the network 

scheme. 

A possible scheme would be using FQ or WFQ scheduling at flow level in all routers and 

a classical parameter-based hop-by-hop AC. With FQ each flow would receive the same 

minimum throughput and an extra throughput equal to the max-min fair share of the 

remaining resources. With WFQ different flows would receive different minimum 

throughputs according to the assigned weights, and an extra throughput equal to the weighted 

max-min fair share of remaining resources. Isolation between flows would be provided by 

queues without needing specific traffic conditioning mechanisms. Per-flow signaling would 
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carry the flow’s minimum throughput request from router to router through the path, and each 

router would perform a local AC decision to limit the number of flows in each link so that 

accepted flows would receive their desired minimum throughput. However, this scheme 

would be too complex. It would require per-flow state and per-flow management in all 

routers. Given that most elastic flows are short (Subsection 2.4), using per-flow signaling 

would imply a high overhead and a rather long duration of the AC phase. 

In the next subsections we review the following set of schemes for TCP elastic traffic 

with AC (see Fig. 4): the scheme for a guaranteed throughput service in the Corelite 

architecture, the implicit AC for TCP connections and the scheme for elastic traffic in the 

Flow-Aware Networking architecture. For each of them, we describe the main characteristics 

of the service, that is, whether the minimum throughput can be different or is the same for all 

flows, the expected extra throughput that results from sharing the remaining resources, and 

whether isolation between flows is provided (so that flows sending more traffic than their 

allocated throughput do not damage well-behaved flows that do send according to their 

allocated throughput), and also the architecture of the scheme, that is, the specific 

mechanisms used, the required state and the use of signaling. 

4.1 The scheme for a throughput service in Corelite 

The Corelite architecture provides several throughput and delay services using the same 

set of basic mechanisms. The scheme for a throughput service [50, 51] is able to provide 

different minimum throughputs rmin to different flows, and an extra throughput according to a 

weight w. It has two modes, which differ in the kind of guarantees: it is deterministic in the 

“guaranteed” mode (there is no loss if the sending rate is not higher than rmin), and it is 

qualitative in the “predictive” mode (low loss if the sending rate is not higher than rmin). It 

provides isolation between flows through traffic conditioning at the network ingress. Per-flow 

signaling is used to indicate the start of the flow, the requested rmin and the AC response. 

Per-flow state in the core is not required. We explain the AC scheme below, but firstly we 

describe the mechanisms used when a flow (in either mode) has already been accepted by 

AC: 

 The ingress router performs traffic conditioning over the flow depending on the 

comparison between the actual flow’s average rate r and two thresholds, rmin and rmax, 

where rmin is the minimum throughput and rmax is equal to rmin plus an extra 

throughput that is adapted according to the feedback received from core routers. A 

token bucket algorithm is used for measuring r. Flow’s packets are classified into 

three types (resulting in three “subflows”): in-profile packets, with a rate equal to 

min(r, rmin); out-profile packets, with a rate equal to min(0, r-rmin, rmax-rmin); and the 

exceeding packets, with a rate equal to min(0, r-rmax). The exceeding packets are 

discarded; the other packets are forwarded and some of them may also be turned into 

special packets called “markers”, as we explain in the next point. 

 The ingress router periodically turns some flow’s packets into markers: one marker is 

inserted for every N number of “data” packets (or bytes) and each marker carries N. 

Therefore, the transmission rate of markers taking into account the carried N reflects 
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the rate of the flow. Markers carry the source address of the ingress router, a unique 

identification of the flow within the ingress router, and the number of “data” packets 

(or bytes) that they represent. Markers are logically distinct packets, but are physically 

piggybacked to a “data” packet. The use of markers differs if the mode is “predictive” 

or “guaranteed”, as we explain in the next point. 

 For “predictive” flows, p-markers for in-profile packets and w-markers for out-profile 

are used. One p-marker is introduced for every Np = K1·rmin “data” packets (or bytes) 

of in-profile traffic, where K1 is a constant. Each p-marker carries Np. One w-marker 

is introduced for every Nw = K2·w “data” packets (or bytes) of out-profile traffic, 

where K2 is a constant and w is the weight. Each w-marker carries Nw. If the actual 

flow’s rate is smaller than rmin, the rate of p-markers reflects this rate (and no 

w-markers are introduced); if the actual flow’s rate is greater than rmin, the rate of 

p-markers reflects rmin and the rate of w-markers reflects the extra rate of the flow 

(above rmin), normalized according to the weight w. 

 For “guaranteed” flows, g-markers for in-profile packets and w-markers for 

out-profile are used, in a similar way as for “predictive”. The only difference is that if 

the actual flow’s rate is smaller than rmin, the rate of g-markers does not reflect this 

rate but rather the minimum rmin. 

 Routers use FIFO queues. They also extract the markers from packets and maintain a 

queue of p-markers, g-markers and w-markers. When congestion is detected, a 

random number of w-markers are selected and sent back to the ingress router that 

generated it (if there were no w-markers, firstly p-markers and then g-markers would 

be selected, but this is not likely to happen as AC is used). Also note that the 

w-markers of flows with a greater weight w are less likely to be selected. 

 Periodically, the ingress router checks the markers received from core routers during 

the last time period corresponding to a flow. The flow’s threshold rmax is reduced in 

proportion to the received markers, and if no marker has been received, it is increased 

additively by a constant. 

The AC scheme is hop-by-hop since each router performs a local AC decision. Per-flow 

signaling carries the AC requests and responses, but it does not require a per-flow state in the 

core. The duration of the AC phase is about one RTT. The scheme is the following: 

 A request signaling packet with the rate requirement rmin is sent along the path. 

 Each router maintains the available bandwidth Bav, which is calculated using the 

received markers and updated at a certain time period. 

 A router in the path receives the request packet. If the request can be accepted (rmin < 

Bav), the router reduces Bav by rmin and forwards the request packet to the next router; 

otherwise a reject response signaling packet is sent back to the ingress. 

At the beginning of a given time period, each router knows the available bandwidth Bav 

for this period. A request is accepted if rmin is available. If so, Bav is reduced by rmin and the 
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resulting value of Bav is used for the next AC decision until the end of this time period. 

During this time period the router estimates the value of Bav to be used for the next time 

period. It is calculated from the number of p-markers and g-markers received over that time 

(the router counts the number of packets – or bytes – that the marker represents, which is 

carried by the marker). Note that in Bav, due to the different ways that p-markers and 

g-markers are generated, the aggregated rate of “predictive” flows is based on “real” 

measurements that aim to take into account the multiplexing gain, while the aggregated rate 

of “guaranteed” flows is based on “virtual” measurements that aim to equal the sum of the 

reserved rates of flows (i.e., based on their declared traffic parameters). Therefore, the 

“guaranteed” mode provides a deterministic guarantee, probably at the cost of reducing 

resource utilization, while the “predictive” mode can be more efficient in using resources but 

it provides a qualitative guarantee. 

This scheme is able to provide different minimum throughput to different flows and 

isolation. It does not require per-flow state in the core or per-flow queuing. However, it 

requires per-flow signaling, which could result in a high overhead, a rather long duration of 

the AC phase, and quite complex management for the markers. Finally, there are no details 

about how TCP flows are defined and identified in the scheme. 

4.2 Implicit AC for TCP connections 

These schemes [52, 53] provide the same minimum throughput to all flows, which here 

are defined as TCP connections. The guarantee is qualitative. It does not provide isolation to 

accepted flows. The start of the flow (connection) and the AC response are implicitly 

indicated without signaling. The AC is fast. Per-flow (connection) state is not required in any 

router. Therefore, their main advantage is the simplicity. The mechanisms used are the 

following: 

 The queue discipline is FIFO and there is no traffic conditioning mechanisms at the 

ingress, as in the “traditional” scheme (see Subsection 3.1). Therefore, isolation 

between flows is not provided and the fairness in resource sharing between the 

accepted flows depends on the TCP rate-adaptive algorithms. 

 The AC scheme is based on measurements and without signaling. The AC algorithm 

measures the actual use of resources through a particular parameter, which is 

compared to a threshold to make the AC decision. 

The authors only consider the AC in a single link, although it could be extended to a 

hop-by-hop scheme (or obviously to a one-hop scheme on logical paths with reservation). 

The start of the flow (connection) is implicitly indicated to the router through its first packet, 

i.e., the TCP connection establishment packets (SYN or SYN/ACK). The AC response is also 

implicitly indicated to the flow: in the case of acceptance, the connection establishment is 

allowed to proceed by forwarding the detected establishment packet; in the case of rejection, 

the connection establishment is aborted, by sending an RST packet to the sender [52] or by 

discarding the detected establishment packet [53]. Therefore, the AC is simple and moreover, 

it is fast as it is made as soon as a new flow arrives (in a hop-by-hop scheme, no signaling 
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packet carrying the AC response of acceptance or rejection in the whole path is sent back to 

the ingress, and an accepted flow does not have to wait to start to transmit). Moreover, the 

scheme assumes that aborting a connection implies that the TCP source will not transmit any 

packet, and that the accepted TCP connections will share resources fairly as usual. Therefore, 

the scheme does not have to control whether the packets entering the network belong to an 

accepted flow or to control the traffic sent by accepted flows to provide isolation, and 

per-flow (connection) state is not required in any router. Therefore, the scheme relies on TCP 

sources being well-behaved, as in the “traditional” scheme. Another disadvantage of this 

scheme is that it is not possible to detect sequences of packets that occur as bursts within 

persistent TCP connections. 

The AC algorithm in [52] measures the actual occupancy of the link and compares it with 

a given threshold, and when it is exceeded, new arriving connections are rejected. 

Specifically, a hysteresis with two thresholds is built to avoid excessive oscillations: 

connections are rejected when the occupancy exceeds the higher threshold and until the 

occupancy decreases below a lower threshold. The authors suggest occupancy thresholds of 

around 90% of the link’s capacity. The relationship between the occupancy threshold and the 

connections’ throughput comes from an analytical model, which considers ideal fair resource 

sharing of a random number of flows. For example, the model predicts an average flow’s 

throughput equal to 20% of the link’s capacity when the occupancy is around 90%. In the 

case of [53], the AC algorithm measures the incoming traffic to the link’s queue and derives 

the actual overflow (loss) probability using a statistical model. A new arriving connection is 

rejected whenever this packet loss probability exceeds a given threshold. In this way a 

minimum throughput is provided since TCP’s throughput is related to packet loss. However, 

note that both AC algorithms use parameters loosely related to the flow’s throughput, and 

therefore tuning the performance is not easy. Moreover, both AC algorithms do not 

immediately consider the effect of a recently accepted flow until future measurements take it 

into account. This takes some time and therefore a high rate of new arriving flows to a router 

may cause false acceptances (however, this has another consequence if a hop-by-hop scheme 

were used: the partial acceptance of a flow in a hop, which later is rejected in the following 

hops, would not prevent other flows from being accepted in this hop; therefore, it would not 

lead to false rejections). 

4.3 The scheme for elastic traffic in Flow-Aware Networking 

The Flow-Aware Networking (or Cross-Protect) architecture [54, 55, 56] provides two 

services, a low jitter and low loss service for real-time flows and a minimum throughput 

service for elastic flows. The minimum throughput’s value is the same for all elastic flows 

while the peak rate of real-time flows should be smaller than a given value. The guarantees 

are qualitative. It provides isolation to accepted flows. The user-network interface remains as 

simple as in the traditional Internet, since implicit ways are used instead of per-flow signaling. 

The AC is fast. It requires per-flow state and per-flow queuing in all routers. The two basic 

mechanisms are the following: 

 The queue discipline uses the Priority Fair Queuing (PFQ) algorithm [55], which 
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shares the link’s capacity fairly between all flows and also gives priority to flows 

whose peak rate is less than the current link’s fair rate. It requires per-flow state in 

each router. 

 The AC scheme is hop-by-hop, based on measurements and does not use signaling. It 

requires per-flow state in each router. It does not differentiate between elastic and 

real-time flows or different traffic rates. It ensures that the current priority traffic load 

is smaller than a given percentage of the link’s capacity, and that the fair rate is higher 

than a given threshold. This threshold is chosen to be higher than the peak rate of 

expected real-time flows, so that they receive scheduling priority in PFQ queues. 

PFQ is an enhancement of the FQ algorithms. Like FQ it shares the link’s capacity fairly 

between all flows, so that each flow receives the max-min fair share and is isolated from 

other flows. In addition to this, PFQ gives scheduling priority to packets from flows whose 

peak rate is smaller than the current fair rate, so that these flows experience low jitter and low 

loss. In this way the requested flow’s QoS (real-time or elastic) can be implicitly indicated 

(without signaling): a flow whose peak rate is smaller than the fair rate is considered a 

real-time flow; otherwise it is considered to be an elastic flow. 

AC and PFQ help each other. AC maintains the fair rate above a threshold, which is 

chosen to be higher than the expected peak rates of real-time flows. PFQ maintains a list of 

active flows, which is smaller than the list of accepted flows, and scalability is assured by the 

fact the number of flows is bounded by AC. PFQ provides two measurements that are used by 

the AC algorithm: fair_rate, an estimation of the rate currently realized by backlogged flows, 

and prio_load, the current load of the traffic receiving scheduling priority. 

The AC scheme is hop-by-hop since each router performs a local AC decision (it could 

also be used as a one-hop scheme on logical paths with reservation). It does not use any 

signaling and therefore it requires per-flow state in each router to detect the new flows. Each 

router maintains a list of accepted flows in an implicit way. A new flow is indicated to a 

router by the arrival of its first packet, the router indicates a local acceptance decision of the 

flow by forwarding this packet or a local rejection decision by discarding it, and the end of 

the flow is detected when no packet is received within a defined timeout interval. This way 

has the advantage of not requiring signaling, and in the case of elastic traffic, sequences of 

packets that occur as bursts within persistent TCP connections can be detected. Per-flow state 

consists in a flow identifier and the arrival time of the last packet of each flow. A flow is 

identified by the usual 5-tuple in IPv4 (protocol, source and destination IP addresses and 

ports) or by the more flexible 3-tuple in IPv6 (flow label, source and destination IP addresses). 

Specifically, the procedure is the following. For each arriving packet, the list is checked. If 

the packet belongs to a flow in the list, it is forwarded and the last packet arrival time of the 

flow in the list is updated. If the packet does not belong to any flow in the list, an AC decision 

for the new flow is made. If the flow is accepted, the packet is forwarded and a new entry is 

added to the list. If the flow is rejected, the packet is discarded. A flow is erased from the list 

when the time since the last packet arrival exceeds the defined timeout. 

The AC scheme does not use any explicit indication of the requested service, neither the 
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QoS (real-time or elastic) nor the traffic parameters (the minimum throughput for elastic or 

the peak rate for real-time). The AC algorithm does not distinguish between elastic and 

real-time flows. The traffic parameter of the new arriving flow is implicitly supposed to be a 

given value, which is defined by the network (the maximum between the following values: 

the minimum throughput of elastic flows and the possible peak rates of real-time flows). This 

implicit approach has two important advantages: signaling carrying the flow’s traffic 

parameters is not required, and the blocking probabilities of all flows are equal, 

independently from their requested traffic rate (see the “trunk reservation” mechanism in 

[57]). 

The AC algorithm is based on measurements using the above mentioned fair_rate and 

prio_load. The general goal of the AC algorithm is to ensure that the current priority traffic 

load (prio_load) is smaller than a given percentage of the link’s capacity, and that the fair rate 

(fair_rate) is higher than the mentioned threshold (i.e, a value higher than the expected peak 

rates of real-time flows). The detailed algorithm is not specified (e.g., the percentage of link’s 

capacity for prio_load, or whether the measurements of fair_rate and prio_load are 

artificially updated once a flow is accepted in order to establish a reservation immediately), 

although a recommended threshold for the fair rate is about 1% of the link’s capacity. 

Note that the AC is fast, as it is made as soon as a new flow arrives, since no signaling 

packet carrying the AC response (of acceptance or rejection) in the whole path is sent back to 

the ingress, and an accepted flow does not have to wait to start to transmit. Also note that, as 

it happens in any hop-by-hop AC scheme, a partial reservation in a hop for a flow 

(established immediately when it is accepted), which is later rejected in other hops, may 

prevent other flows from being accepted in this hop (for some time), leading to false 

rejections. However, in this scheme, since no AC response signaling packet is sent back to the 

ingress, this situation can last for more time and be worse if a rejected (but partially accepted) 

flow persists in transmitting (although this is not likely to happen). 

 

5. Conclusions 

The users of “data” applications such as web browsing, peer-to-peer file sharing, ftp, 

e-mail and other, expect that there is no error in the transfer of documents and also that the 

response time is the smallest possible below a certain maximum value. Therefore TCP elastic 

flows generated by these applications are satisfactorily supported by a network service that 

provides a minimum throughput to the flow and if possible, an extra throughput, the 

Minimum Throughput Service (MTS). With this in mind, we have reviewed the main 

network schemes that have been proposed in the Internet for TCP elastic traffic, with and 

without AC, focusing on the main characteristics of the service and their architecture. 

We have studied the following network schemes without AC: 

 The “traditional” scheme provides the best-effort service, which in combination with 

TCP rate-adaptive algorithms provides a fair throughput service. Different 

throughputs and isolation between flows are not provided. It is based only on FIFO 
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and Tail Drop (or RED) queues. 

 The schemes based on packet classes can provide different throughputs and isolation 

between flows. Traffic conditioning mechanisms at the ingress assign each flow’s 

packet to a class (e.g., by comparing the flow’s average sending rate and the flow’s 

desired minimum throughput, flow’s packets are assigned to an in or out class) and 

queue disciplines are based on classes (e.g., the out class has a higher discarding 

priority than the in class). Per-flow state is only kept at the edge while the core 

remains simple and highly scalable. 

 The scheme based on CSFQ provides a fair throughput service (a weighted version is 

also possible) and isolation between flows. The ingress router estimates the flow’s 

incoming rate and writes it on a label in the packet’s header. The CSFQ algorithm in 

queues discards packets probabilistically, using only the packet’s label and aggregated 

measurements, so that each flow receives the fair rate. Per-flow state is only required 

at the edge. However, it requires processing and updating the label for each packet in 

each router, as well as encoding the label in the packet’s header. 

 The USD scheme provides different throughputs to flows from different users but in 

an aggregated way. It provides isolation between flows from different users. Each user 

is assigned a given weight and WFQ in queues share resources between users 

according to this weight for both the sending and the receiving traffic. It requires 

per-user state in all routers (it does not require per-flow state). 

We have studied the following network schemes with AC: 

 The scheme for a throughput service in Corelite provides different minimum 

throughputs to different flows as well as isolation. The ingress router turns some 

flows’ packets into the so-called (g or p) markers, so that their rate indicates the 

minimum throughput, and other flows’ packets into w-markers, so that their rate 

indicates the assigned extra throughput. In each router, ordinary and marker packets 

are scheduled together with FIFO. When congestion is detected w-markers are sent 

back to the ingress router, which then decreases the extra throughput assigned to the 

flow. The AC scheme is hop-by-hop, per-flow signaling carries the AC request and 

response, and each router determines the aggregated reservation by measuring the 

arriving g and p markers during a given time period. It neither requires per-flow state 

in the core nor per-flow queuing. However, it requires per-flow signaling, which could 

result in a high overhead and a rather long duration of the AC phase as well as quite 

complex management for the markers. Finally there are no details about how TCP 

flows are defined and identified in the scheme. 

 The scheme with an implicit AC for TCP connections provides the same minimum 

throughput to all flows, which are defined here as TCP connections. It does not 

provide isolation. The data path is simply based on FIFO queues, and the AC scheme 

is hop-by-hop (or a one hop scheme on logical paths with reservation). It is based on 

measurements and it does not have signaling. The start of the flow (connection) is 
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indicated to a router through the TCP connection establishment packets: in the case of 

acceptance, the connection establishment is allowed to proceed by forwarding these 

packets, and otherwise, it is aborted. Therefore, the AC is fast, as it is made as soon as 

a new flow arrives. For the local AC decision, the router measures the actual use of 

resources through a particular parameter, and when it exceeds a given threshold, new 

connections are rejected. Per-flow (connection) state is not required in the core or at 

the edge. However, the scheme relies on TCP sources being well behaved. It does not 

detect sequences of packets that occur as bursts within persistent TCP connections. 

Tuning the performance is not easy since the parameters measured are loosely related 

to the flow’s throughput. The AC algorithms do not immediately consider the effect of 

a recently accepted flow until future measurements take it into account. This takes 

some time, and therefore, a high rate of new arriving flows to a router may cause false 

acceptances. 

 The scheme for elastic traffic in Flow-Aware Networking provides the same minimum 

throughput to elastic flows, which are defined here as sequences of packets within 

TCP connections. A service for real-time flows is also provided. The scheme provides 

isolation. Queues use the PFQ algorithm, which shares the link’s capacity fairly 

between flows, provides isolation and gives priority to flows whose peak rate is less 

than the current link’s fair rate (i.e., for real-time flows). PFQ requires per-flow state. 

The AC scheme is hop-by-hop (or a one hop scheme on logical paths with 

reservation), based on measurements and without signaling. The AC requires a 

per-flow state. A new flow is indicated by the arrival of its first packet. The router 

indicates a local acceptance decision of the flow by forwarding this packet or a local 

rejection decision by discarding it. The end of the flow is detected when no packet is 

received within a defined timeout interval. Therefore, the AC is fast, as it is made as 

soon as a new flow arrives. The AC algorithm does not differentiate between elastic 

and real-time flows and the traffic rate of the new arriving flow is supposed to be the 

maximum possible value. It ensures that the current priority traffic load is smaller 

than a given percentage of the link’s capacity, and that the fair rate is higher than a 

given threshold (which is chosen to be higher than the peak rate of the expected 

real-time flows). 

From among the different network schemes without AC we have studied, the ones based 

on packet classes show a good trade-off between the simplicity (per-flow operations are kept 

at the edge only) and the service characteristics (they allow different throughputs and 

isolation between flows to be provided). Out of the network schemes with AC we have 

studied, we found that is of special interest the definition of flow used in the scheme for 

elastic traffic in Flow-Aware Networking, as it captures the sequences of packets that occur 

as bursts within persistent TCP connections, as well as the implicit way of detecting the start 

and end of these flows. Another interesting aspect of some of these schemes with AC is the 

utilization of implicit ways for indicating the requested service parameters (QoS and traffic), 

although they achieve this by providing the same minimum throughput to all flows. In all of 

them the AC is hop-by-hop and based on measurements. However, they require either 
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per-flow signaling in the core, or are not able to provide different throughputs or isolation 

between flows, or require per-flow state and per-flow queuing in the core. 

References 

[1] Postel J., “Transmission Control Protocol”, RFC 793, 1981. 

[2] Tobagi F., Noureddine W. , “The Transmission Control Protocol. An introduction to TCP 

and a research survey”, Technical Report, Stanford University, 2002. 

[3] Comer D.E., “Internetworking with TCP/IP. Volume I”, published by Prentice Hall, ISBN 

0-13-227836-7, 1995. 

[4] Massoulié L., Roberts J.W., “Arguments in favor of admission control for TCP flows”, 

Proceedings of the 16th International Teletraffic Congress - ITC16, Edinburgh, UK, June 

1999. 

[5] Noureddine W., Tobagi F., “Improving the performance of interactive TCP applications 

using service differentiation”, Elsevier Computer Networks, vol. 40, no. 1, 2002. 

[6] Shenker S., “Fundamental design issues for the future Internet”, IEEE Journal on 

Selected Areas in Communications, vol. 13, no. 7, 1995. http://dx.doi.org/10.1109/49.414637 

[7] Jacobson V., “Congestion avoidance and control”, ACM SIGCOMM Computer 

Communication Review, vol. 18, no. 4, 1988. http://dx.doi.org/10.1145/52325.52356 

[8] Braden R., “Requirements for Internet hosts - communication layers”, RFC 1122, 1989. 

[9] Mathis M., Mahdavi J., Floyd S., Romanow A., “TCP selective acknowledgment 

options”, RFC 2018, 1996. 

[10] Floyd S., Mahdavi J., Mathis M., Podolsky M., “An extension to the selective 

acknowledgement (SACK) option for TCP”, RFC 2883, 2000. 

[11] Allman M., Paxson V., Stevens W., “TCP Congestion Control”, RFC 2581, 1999. 

[12] Paxson V., Allman M., “Computing TCP's retransmission timer”, RFC 2988, 2000. 

[13] Massoulié L., Roberts J.W., “Bandwidth sharing: objectives and algorithms”, IEEE/ACM 

Transactions on Networking, vol. 10, no. 3, 2002. 

http://dx.doi.org/10.1109/TNET.2002.1012364 

[14] Bertsekas D., Gallager R., “Data networks”, published by Prentice Hall, ISBN 

0-132-00916-1, 1987. 

[15]Massoulié L., Roberts J.W., “Bandwidth sharing and admission control for elastic traffic”, 

Telecommunication Systems, vol. 15, no. 1-2, 2000. 

[16] Bansal N., Harchol-Balter M., “Analysis of SRPT scheduling: investigating unfairness”, 

ACM SIGMETRICS Performance Evaluation Review, vol. 29, no. 1, 2001. 

[17] Ramakrishnan K., Floyd S., Black D., “The addition of Explicit Congestion Notification 

(ECN) to IP”, RFC 3168, 2001. 

[18] Floyd S., Jacobson V., “Random early detection gateways for congestion avoidance”, 

IEEE/ACM Transactions on Networking, vol. 1, no. 4, 1993. 

http://dx.doi.org/10.1109/90.251892 

[19] Floyd S., Henderson T., Gurtov A., “The NewReno modification to TCP's Fast Recovery 

algorithm”, RFC 3782, 2004. 

[20] Fall K., Floyd S., “Simulation-based comparisons of Tahoe, Reno, and SACK TCP”, 

ACM SIGCOMM Computer Communication Review, vol. 26, no. 3, 1996. 



 Network Protocols and Algorithms 

ISSN 1943-3581 

2013, Vol. 5, No. 3 

www.macrothink.org/npa 65 

http://dx.doi.org/10.1145/235160.235162 

[21] Blanton E., Allman M., Fall K., Wang L., “A conservative selective acknowledgment 

(SACK) – based loss recovery algorithm for TCP”, RFC 3517, 2003. 

[22] Chiu D.M., Jain R., “Analysis of the increase and decrease algorithms for congestion 

avoidance in computer networks”, Computer Networks and ISDN Systems, vol. 17, no. 1, 

1989. http://dx.doi.org/10.1016/0169-7552(89)90019-6 

[23] Floyd S., Jacobson V., “On traffic phase effects in packet-switched gateways”, 

Internetworking: Research and Experience, vol. 3, no. 3, 1992. 

[24] Balakrishnan H., Padmanabhan V.N., Seshan S., Stemm M., Katz R.H., “TCP behavior of 

a busy Internet server: analysis and improvements”, Proceedings of the IEEE Infocom 1998. 

San Francisco, CA, USA. 

[25] Brakmo L., Peterson L., “TCP Vegas: end to end congestion avoidance on a global 

Internet”, IEEE Journal on Selected Areas in Communication, vol. 13, no. 8, 1995. 

[26] Jin C., Wei D.X., Low S.H., Buhrmaster G., Bunn J., Choe D.H., Cottrell R.L.A., Doyle 

J.C., Feng W., Martin O., Newman H., Paganini F., Ravot S., Singh S., “Fast TCP: from 

theory to experiments”, IEEE Network, vol. 19, no. 1, 2005. 

[27] Casetti C., Gerla M., Mascolo S., Sanadidi M. Y., Wang R., “TCP Westwood: end-to-end 

congestion control for wired/wireless network”, Wireless Networks, vol. 8, no. 5, 2002. 

http://dx.doi.org/10.1023/A:1016590112381 

[28] Katabi D., Handley M., Rohrs C., “Congestion control for high bandwidth-delay product 

networks”, ACM SIGCOMM Computer Communication Review, vol. 32 no. 4, 2002. 

http://dx.doi.org/10.1145/964725.633035 

[29] Aggarwal A., Savage S., Anderson T., “Understanding the performance of TCP pacing”, 

Proceedings of the IEEE Infocom 2000, Tel-Aviv, Israel. 

[30] Aweya J., Ouellette M., Montuno D.Y., “A self-regulating TCP acknowledgment (ACK) 

pacing scheme”, International Journal of Network Management, vol. 12, no. 3, 2002. 

http://dx.doi.org/10.1002/nem.426 

[31] Floyd S., “HighSpeed TCP for Large Congestion Windows”, RFC 3649, 2003. 

[32] Kelly T., “Scalable TCP: improving performance in high speed wide area networks”, 

ACM SIGCOMM Computer Communication Review, vol. 32, no. 2, 2003. 

[33] Xu L., Harfoush K., Rhee I., “Binary increase congestion control for fast long-distance 

networks”, Proceedings of the IEEE Infocom 2004. Hong Kong, China, March 7-11, 2004. 

[34] Tan K., Song J., Zhang Q., Sridharan M., “A Compound TCP approach for high-speed 

and long distance networks”, Proceedings of the IEEE Infocom 2006. April 23 - 29, 2006, 

Barcelona, Spain. 

[35] Tian Y., Xu K., Ansari N., “TCP in wireless environments: problems and solutions”, 

IEEE Communications Magazine, vol. 43, no. 3, 2005. 

[36] Lai Y., Yao C., “TCP congestion control algorithms and a performance comparison”, 

Proceedings of the 10
th

 IEEE International Conference on Computer Communications and 

Networks, 2001. 15-17 Oct. 2001 

[37] Floyd S., homepage at ICIR (the Center for Internet Research at the International 

Computer Science Institute), http://www.icir.org/floyd/. 

[38] Crovella M.E., Bestavros A., “Self-similarity in World Wide Web traffic: evidence and 



 Network Protocols and Algorithms 

ISSN 1943-3581 

2013, Vol. 5, No. 3 

www.macrothink.org/npa 66 

possible causes”, IEEE/ACM Transactions on Networking, vol. 5, no. 6, 1997. 

http://dx.doi.org/10.1109/90.650143 

[39] Braden B., Clark D., Crowcroft J., Davie B., Deering S., Estrin D., Floyd S., Jacobson V., 

Minshall G., Partridge C., Peterson L., Ramakrishnan K., Shenker S., Wroclawski J., Zhang 

L., “Recommendations on queue management and congestion avoidance in the Internet”, 

RFC 2309, 1998. 

[40] Blake S., Black D., Carlson M., Davies E., Wang Z., Weiss W., “An architecture for 

Differentiated Services”, RFC 2475, 1998. 

[41] Clark D.D., Fang W., “Explicit allocation of best-effort packet delivery service”, 

IEEE/ACM Transactions on Networking, vol.6, no. 4, 1998.  

http://dx.doi.org/10.1109/90.720870 

[42] Heinanen J., Baker F., Weiss W., Wroclawsky J., “Assured Forwarding PHB group”, 

RFC 2597, 1999. 

[43] Feng W., Kandur D.D., “Adaptive packet marking for maintaining end-to-end throughput 

in a differentiated-services Internet”, IEEE/ACM Transactions on Networking, vol. 7, no. 5, 

1999. 

[44] Kumar K.R.R., Ananda A.L., Jacob L., “TCP-friendly traffic conditioning in DiffServ 

networks: a memory-based approach”, Elsevier Computer Networks, vol. 38, no. 6, 2002. 

[45] Guo L., Matta I., “The war between mice and elephants”, Proceedings of the IEEE 

International Conference on Network Protocols, 2001. 11-14 November 2001, Riverside, CA, 

USA. 

[46] Avrachenkov K., Ayesta U., Brown P., Nyberg E., “Differentiation between short and 

long TCP flows: predictability of the response time”, Proceedings of the IEEE Infocom, 2004. 

Hong Kong, China, March 7-11, 2004. 

[47] Stoica I., Shenker S., Zhang H., “Core-stateless fair queuing: a scalable architecture to 

approximate fair bandwidth allocations in high-speed networks”, IEEE/ACM Transactions on 

Networking, vol. 11, no. 1, 2003. http://dx.doi.org/10.1109/ICDCS.2000.840929 

[48] Wang Z., Basu A., “Resource allocation for elastic traffic: architecture and mechanisms”, 

Proceedings of the IEEE/IFIP Network Operations and Management Symposium, 2000. 

Honolulu, HI, USA, April 10-14, 2000. 

[49] Wang Z., “User-Share Differentiation (USD) Scalable bandwidth allocation for 

differentiated services”, Internet draft draft-wang-diff-serv-usd-00.txt, 1998. 

[50] Sivakumar R., Kim T., Venkitaraman N., Bharghavan V., “Achieving per-flow weighted 

rate fairness in a core stateless network”, Proceedings of the IEEE Conference on Distributed 

Computing Systems, 2000. 10-13 April 2000, Taipei, Taiwan. 

[51] Sivakumar R., Venkitaraman N., Kim T., Lu S., Nandagopal T., Bharghavan V., “The 

Corelite QoS architecture: providing a flexible service model with a stateless core”, Research 

report, Illinois Mobile Environments Laboratory (TIMELY) research group at the University 

of Illinois at Urbana Champaign, 1999. 

[52] Kumar A., Hegde M., Anand S.V.R., Bindu B.N., Thirumurthy D., Kherani A.A., 

“Nonintrusive TCP connection admission control for bandwidth management of an Internet 

access link”, IEEE Communications Magazine, vol. 38, no. 5, 2000.  

http://dx.doi.org/10.1109/35.841841 



 Network Protocols and Algorithms 

ISSN 1943-3581 

2013, Vol. 5, No. 3 

www.macrothink.org/npa 67 

[53] Mortier R., Pratt I., Clark C., Crosby S., “Implicit admission control”, IEEE Journal on 

Selected Areas in Communications, vol. 18, no. 12, 2000.  

http://dx.doi.org/10.1109/49.898743 

[54]Roberts J.W., “Internet traffic, QoS, and pricing”, Proceedings of the IEEE, vol. 92, no. 9, 

2004. http://dx.doi.org/10.1109/JPROC.2004.832959 

[55] Kortebi A., Oueslati S., Roberts J.W., “Cross-protect: implicit service differentiation and 

admission control”, Proceedings of the IEEE Workshop on High Performance Switching and 

Routing, 2004. Arizona, USA. 

[56] Oueslati S., Roberts J.W., “A new direction for quality of service: Flow-aware 

networking”, Proceedings of the Euro-NGI Conference on Next Generation Internet 

Networks, 2005. Rome, Italy, 18-20 April, 2005. 

[57] Roberts J.W., Mocci U., Virtamo J. (Eds.), “Broadband network teletraffic. Performance 

evaluation and design of broadband multiservice networks. Final report of Action COST 242”, 

Lecture Notes in Computer Science (LNCS), vol. 1155, Springer-Verlag, ISBN 

3-540-61815-5, 1996. 

 

Copyright Disclaimer 

Copyright reserved by the author(s). 

This article is an open-access article distributed under the terms and conditions of the 

Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 

 

 


