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Abstract 

For most of the applications in wireless sensor networks, localization is fundamental and 

essential. The localization systems can be categorized into two types: range-based and range-

free. In this paper, we propose a new range-free localization algorithm. The basic principle of 

this algorithm is to define two classes of nodes according to the number of anchors in the 

neighborhood, and then to apply the proposed localization methods to each class of nodes. The 

computation complexity of related algorithms has also been estimated and analyzed. The 

simulation results prove that our proposed two-class algorithm has acceptable complexity, and 

achieves better precision than the existing ones, such as Centroid, CPE and DV-hop. 

Keywords: localization, range-based, range-free, wireless sensor networks.  
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1. Introduction 

 Recent years, wireless sensor networks have been hot topics in worldwide research and 

industrial fields, for their vast applications such as medical care, disaster relief, environmental 

monitoring, and military surveillance. For these applications, localization is fundamental and 

essential. Without precise knowledge of the location, many applications of wireless sensor 

networks cannot work [1]. 

The existing localization techniques can be generally categorized into two types: range-

based and range-free. 

In the range-based scheme, the distance or angle between nodes must first be precisely 

measured. This can achieved using Received Signal Strength Indicator (RSSI) [2], Time of 

Arrival (TOA) [3], Time Difference of Arrival (TDOA) [4], and Angle of Arrival (AOA) [5]. 

Then, the position can be estimated by the trilateration or triangulation [2-5], which is the 

process to determine the node position, based on its distances or angles to at least 3 other nodes. 

The range-based scheme usually has two main drawbacks. First, additional ranging devices are 

needed, which consumes more energy and increases the cost. Second, range information is very 

easily affected by multi-path fading, noise and environment variations. 

 While the range-based scheme uses the distance or angle between nodes, the range-free 

scheme uses connectivity information between nodes. So the range-free scheme doesn’t need the 

additional ranging devices. This scheme could be very helpful for very simply constructed 

sensor nodes. Another advantage of range-free scheme is its robustness, because the 

connectivity between nodes is not so easily affected by the environment. So, we focus our 

research on the range-free scheme. In this scheme, the nodes which are aware of their position 

are called anchors, while others are called normal nodes. Normal nodes first gather the 

connectivity information as well as the position of anchors, and then calculate their own 

positions. The existing typical range-free localization algorithms, such as Centroid [6] [7], CPE 

(Convex Position Estimation) [8] and DV-hop (Distance Vector-Hop) [9-11], are not accurate 

enough. Therefore, the localization accuracy of range-free methods should be further improved.  

 In this paper, we propose a new range-free algorithm. In this algorithm, according to the 

number of accessible anchors, the normal nodes are divided into two groups. Normal nodes of 

the first class are those which have less than three anchors in their neighborhood, while those of 

the second class have at least three anchors. For the normal nodes of the first class, a Checkout 

DV-hop method is proposed. For the normal nodes of the second class, we propose a Mid-

Perpendicular method.   

 We analyze the computation complexity of the related algorithms. Both the theoretical 

analysis and simulation results prove that Checkout DV-hop has a negligible increase in 

complexity, while Mid-Perpendicular has an acceptable increase. Simulation results show that 
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our proposed algorithm has better precision than the existing ones such as Centroid, CPE and 

DV-hop. 

 The rest of this paper is organized as follows. Section 2 presents a survey of related range-

free works. Section 3 presents our proposed algorithm. Although part of Section 3 has already 

been included in our previous work [12], we here will give more detailed explanation and also 

add the exceptional cases. In Section 4, the computation complexities of related algorithms are 

estimated. Section 5 presents the simulation results and analysis. Finally we give our conclusion 

and future prospects in Section 6. 

2.  Related Work 

 In this section, the most relevant range-free research works are reviewed. They were 

developed in the aim of different goals including accuracy, cost, and scalability. Some of them, 

such as Centroid and CPE, are very simple, but demand that normal nodes have at least three 

neighbor anchors. Others, like DV-hop, can handle the case where a normal node has less then 

three neighbor anchors. But this is achieved at the cost of heavy communication and 

computation. 

 Centroid and CPE are two well-known range-free localization algorithms. They are 

designed for normal nodes which have at least three neighbor anchors. These methods assume 

that the normal node N has m neighbor anchors A1, A2… Am, whose coordinates are respectively 

(x1, y1) (x2, y2) … (xm, ym), and that all nodes have identical communication range. The principle 

of Centroid algorithm is as follows: when the normal node N wants to determine its position, it 

listens to the neighbor anchors’ beacons, and from the information gathered, it computes its 

position, denoted as Ncentroid (xcentroid, ycentroid), using equation (1). 

1 1

( ) /  ,    ( ) /
m m

i i

i icentroid centroidx x m y y m
 

       (1) 

The Centroid algorithm has a low computation cost, and doesn’t increase the network 

traffic. It can also get relatively good accuracy when the distribution of anchors is regular. 

However, when the distribution of anchors is not even, the estimated position derived from the 

Centroid algorithm will be inaccurate [13]. 

CPE has slightly higher localization accuracy than Centroid. The basic principle of CPE is 

to define the estimative rectangle (ER), which bounds the overlapping communication region of 

A1 A2…Am. Then, the centre of the estimated rectangle, denoted as NCPE, is regarded as the 

estimated position for N. The position of NCPE, that is [xCPE, yCPE], can be calculated as: 
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The DV-hop algorithm was proposed by Niculescu [9]. Although its complexity is higher 

than that of Centroid and CPE, it is a suitable solution for normal nodes having less than three 

neighbour anchors. As shown in Figure 1, although the normal node Nx has only one neighbour 

or reachable anchor A1, Nx can use DV-hop for localization. The algorithm consists of the 

following three steps. First, each anchor Ai broadcasts its position; this information is relayed by 

the normal nodes so that Nx knows every anchor Ai’s positions as well as the minimal hop count 

from Nx to Ai (denoted as hopi,Nx). Second, each anchor Ai calculates dhpi, which is the average 

distance per hop, and then broadcastes it. Third, Nx obtains its distance to each anchor Ai by 

multiplying hopi,Nx by dhpi, and then Nx finally uses this distance to each anchor to calculate its 

estimated position.  

 

Figure 1.  Example of DV-hop 

In [10], an improved DV-hop is proposed, which makes all anchors share the same average 

distance per hop. The average distance per hop defined in [10] is the average of all dhpi. In [11], 

a robust weighted algorithm is presented, which uses the weighted method to calculate the 

average distance per hop. It demands complex calculation but results in only slight improvement 

of performance. 

From the previous literature review, we find that different proposed algorithms have 

respective qualities and drawbacks, in particular in terms of precision. This encouraged us to 

propose a range-free localization algorithm in order to reach a satisfying trade-off. 

3.  A Novel Localization Algorithm 

According to the number of neighbour anchors, we divide the normal nodes into two 

classes. Normal nodes in class one are those which have less than three neighbour anchors, 

while those in class two have at least three. We propose two different localization methods for 

the two classes respectively. 

3.1  Checkout DV-hop Method for Class One Nodes 

3.1.1  Principle of the Checkout DV-hop Method 
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For normal nodes of class one, DV-hop is a frequently-used localization method. The key 

issue of DV-hop is to calculate the approximate distance between the normal node Nx and each 

anchor Ai, by multiplying minimal hop number by average distance per hop. This means that: 

              
 ,N , N =  , 1,2....i x i x id hop dhp i m                    (3) 

Where di,Nx is the approximate distance between Nx and Ai, hopi,Nx is the minimal hop 

number between Nx and Ai, and dhpi is the approximate average distance per hop for Ai. The 

calculation of dhpi is shown as:  

  , , 

( ) ( )

 = ( ) / ( )i i k i k

k k i k k i

dhp d hop
 

         (4) 

Where di,k is the distance between Ai and Ak, hopi,k  is the minimal hop number between Ai 

and Ak. 

Since di,Nx is an important and basic element for calculating the position of the normal node 

Nx [9][10], it has a considerable influence on the accuracy of DV-hop. We denote the true 

distance from Nx to Ai as di,NxTrue, and the difference between di,NxTrue and di,Nx as Δdi,Nx, where 

obviously Δdi,Nx is the main reason for the inaccuracy of DV-hop. If we denote Δdhpi as the 

difference between dhpi and its true value, then from equation (3), we have that: 

                         
 ,N , N =  i x i x id hop dhp                                      (5) 

Equation (5) indicates that Δdi,Nx is proportional to hopi,Nx. So when hopi,Nx increases, Δdi,Nx 

also increases, and the accuracy of DV-hop decreases. If Anear is the nearest anchor to Nx among 

all anchors A1 A2 … Am, then correspondingly hopnear,Nx is the smallest, so that Δdnear,Nx  is the 

smallest position error. So we can conclude that, compared to other anchors, the distance from 

the normal node Nx to its nearest anchor Anear, denoted as dnear,Nx, has the highest reliability in 

terms of precision. Based on this conclusion, our proposed Checkout DV-hop method tries to 

make best use of the relatively more reliable value dnear,Nx. 

Now we illustrate the principle of our algorithm for class one nodes. Our method adds a 

checkout step to DV-hop, as shown in Figure 2. For the purpose of comparison, Figure 2(a) 

shows the result of DV-hop without “checkout”, while Figure 2(b) shows our checkout step. As 

shown in Figure 2(a), the normal node Nx uses DV-hop algorithm to obtain its estimated position 

(x’, y’) at NDV-hop, and then calculate the distance between NDV-hop and Anear (here, Anear is A1), 

denoted as dDV-hop. Nx has already used equation (3) to calculate its approximate distance to the 

nearest anchor Anear, denoted as dnear,Nx. 
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           Figure 2(a).  DV-hop         Figure 2(b).  Checkout DV-hop          

Figure2.  Principle of Checkout DV-hop 

At this point, it is time to perform our proposed checkout step. The purpose of the checkout 

step is to change the estimated position from NDV-hop (see Figure2(b)) to a new one Ncheckout, whose 

distance to Anear is dnear,Nx. To achieve this, the easiest and quickest way is to change the position 

along the line connecting NDV-hop and Anear. Ncheckout is on the line from NDV-hop to Anear, and the 

distance between Ncheckout and Anear is dnear,Nx. The position of Anear is (xAnear, yAnear) and of NDV-hop 

is (x’, y’), then the position of Ncheckout, denoted as (xcheckout, ycheckout) can be derived as follows.  

Ncheckout is chosen as our node estimated position. 
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         (6) 

 

3.1.2  Procedure of the Checkout DV-hop Method 

Our method comprises four steps. The fourth step, which is checkout step, is proposed by 

us, while the first three steps are the same with DV-hop. The procedure of our method is 

presented as follows.  

Step One: Initially, the system installer ensures that each anchor Ai is aware of its own 

position (xi, yi). Every node Nh, including anchors, holds a variable hopi,Nh, which represents the 

minimal hop number from Nh to Ai. Nh initializes hopi,Nh as -1(if Nh is not Ai), or 0(if Nh is Ai). 

Then, Ai broadcasts a beacon “BeaconAi”  to its neighbors. BeaconAi contains Ai’s position (xi, 

yi) and its hop-number value 0. When Ai’s neighbor node Nq receives BeaconAi, Nq memorizes 

(xi, yi), and changes hopi,Nq from 0 to 1. Then Nq also broadcasts to its neighbors a new beacon 

“BeaconNq”, containing (xi, yi) and hopi,Nq. When Nq’s neighbor Nr receives BeaconNq, Nr 

memorizes (xi, yi) and compares hopi,Nr to hopi,Nq+1, and also to -1. To maintain the minimal 

hop number to Ai, if hopi,Nr=-1 or hopi,Nr>hopi,Nq+1, Nr changes hopi,Nr to hopi,Nq+1, and Nr 

broadcasts “BeaconNr” , containing (xi, yi) and hopi,Nr. Otherwise, Nr just ignores BeaconNq. The 
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rest of the nodes do the same operation as Nr. Through this mechanism, all nodes in the 

network get the minimal hop number to every anchor. 

Step Two: at this point, each normal node Nx knows its hopi,Nx (minimal hop number from 

Ai to Nx). Each anchor Ai has also obtained hopi,k, which is the minimal hop number to any 

other anchor Ak. So Ai can calculate its average distance per hop dhpi, and then broadcasts dhpi 

through the network. After receiving dhpi, the normal node Nx can use equation (3) to get di,Nx, 

which is the approximate distance between Nx and each anchor Ai. If Anear is the nearest anchor 

to Nx, according to the conclusion in section 3.1.1, dnear,Nx will be used in the fourth step (our 

checkout step). 

Step Three: The normal node Nx use the approximate distance to each anchor to calculate 

its estimated position NDV-hop(x’, y’). The details of the third step can be found in [9][10]. 

Step Four: Finally, with our proposed checkout step, the normal node Nx calculates the 

distance between NDV-hop and Anear, denoted as dDV-hop. Because Nx already knows di,Nx, Ai’s 

position (xA, yA), NDV-hop’s position (x’, y’), and dDV-hop, Nx uses equation (6) to calculate 

Ncheckout, which is the final estimated position of Nx. 

3.2  Mid-Perpendicular Method for Class Two Nodes 

For normal nodes of class two, Centroid and CPE are popular methods because of their low 

communication and computation cost, regardless of their inaccuracy. However, our proposed 

Mid-Perpendicular method is able to achieve higher accuracy. 

We assume that the communication ranges of anchors are all the same as displayed by the 

circles of Figure 3. The normal node N has three neighbour anchors (A1 A2 A3). It means that N 

locates in the overlapping communication region of A1 A2 A3.  

Figure 3 shows how to derive the centre of overlapping region. Line A2A3 connects anchors 

A2 and A3, and the mid-perpendicular of line A2A3 is “Line1”. According to the symmetry, Line1 

go through the centre of the overlapping region. If the same observation is made for line A1A2 

and line A1A3, there will be a total of three mid-perpendiculars: Line1, Line2, and Line3. Since 

each mid-perpendicular goes through the centre of the overlapping region, the cross point of the 

three mid-perpendiculars “P” can be regarded as the centre. In fact, in order to calculate the 

cross point P, only two mid-perpendiculars are needed, for example, Line1 and Line2. 
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Figure 3.  Diagram of Mid-Perpendicular Method 

If the coordinates of three anchors A1 A2 A3 are (x1, y1), (x2, y2), and (x3, y3), then Line1, 

which is the mid-perpendicular of line A2 A3, can be expressed as: 

2 3 2 3 2 3
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                          (7) 

and Line2, which is the mid-perpendicular of line A1 A3, can be expressed as: 

1 3 1 3 1 3
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The cross point P of the above two mid-perpendiculars, can then be calculated as displayed 

by equation (9). The centre of the overlapping region, P finally becomes N’s estimated position, 

and is the result of our proposed method. That is why our method is called Mid-Perpendicular. 
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     

        (9) 

The process of our Mid-Perpendicular is summarized as follows. First, any normal node N 

that can be considered as a class 1 node sends a localization request to its neighbour anchors A1 

A2 A3. As a response, A1 A2 and A3 send their respective positions to N. Finally, N calculates its 

estimated position P using equation (9).  

The exceptional case is: when the triangle formed by three neighbor anchors is an obtuse 

triangle (that is, one angle of the triangle is greater than 90°), then we choose the middle of the 

longest side of the triangle as the estimated position. Because in this case, the overlapping 

communication region by three neighbor anchors is the same as the overlapping region by two 

of the three anchors, which forms the longest side of the triangle. 
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4.  Algorithm Complexity Estimates 

In this section, we analyze the computation complexity of the localization algorithms. The 

algorithms considered in this section include Centroid, CPE, DV-hop, our proposed Mid-

Perpendicular and Checkout DV-hop. 

The study of an algorithm’s complexity involves determining the amount of resources 

(such as time and storage) necessary to execute it. Theoretically, it is commonly expressed 

using “O” notation, which suppresses multiplicative constants and lower order terms [14]. For 

example, if the number of elementary operations required by an algorithm on all inputs of size 

m is at most 5m
3
 + 3m, then its calculation complexity is O(m

3
). The following is the detailed 

analysis of calculation complexity for the related algorithms. 

4.1 Centroid Complexity         

We find that the computation for xcentroid involves two elementary operations: “+” and “/”.  

The number of “+” operation is m-1, and the number of “/” operation is 1. For ycentroid, the same 

result can be obtained. So, the total amount of elementary operations for Centroid is 2×m. 

Finally, we can conclude that the calculation complexity for Centroid is O(m). 

4.2 CPE Complexity 

From equation (7), we find that the computation for xCPE demands three elementary 

operations: compare, “+” and “/”. In order to get  
1

max
m

i
i

x


 and  
1

min
m

i
i

x


, we first compare x1 and 

x2, and without loss of generality, assume that x1 > x2. We set the current maximum value 

“max” as x1, and the current minimum value “min” as x2.  Then, for each xi from x3 to xm, we 

first compare xi to “max”. If xi is greater than the current value of “max”, then xi is assigned to 

“max”. Otherwise, another comparison will be performed with “min”. So, for each xi from x3 

to xm, 1 or 2 compare operations are needed, and the average number is 3/2. As a result, in order 

to obtain xCPE, the number of compare operations should be 1+3/2×(m-2)=3/2×m-2. The 

number of “+” operation is 1 as well as that of “/” operation. For yCPE, the same result can be 

obtained. So, the total amount of elementary operations for CPE is 2×3/2×m=3×m. Finally, we 

can conclude that the calculation complexity for CPE is O(m), which is similar to the results for 

Centroid. 

 4.3 Mid-Perpendicular Complexity 

When m is 3, the calculation of our proposed Mid-Perpendicular method is shown as 

equation (9). 

When m>3, from these m neighbor anchors A1, A2, …, Am, we select any three of them (for 

example, Ai, Aj, Ak) to form a 3-anchor group { Ai, Aj, Ak } (any two groups shouldn’t be the 
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same). For each group, we use equation (8) to calculate its estimated position. The average of 

all these positions is the final estimated position for N. Since equation (9) has a constant 

amount of operations, the complexity of Mid-perpendicular method is dominated by the 

selection of all the 3-anchor groups. 

The selection can be fulfilled in three steps. First, we sequentially select one anchor among 

the total m anchors, which brings in the complexity of O(m). Second, among the m-1 anchors, 

we continue to select one anchor, with the complexity of O(m-1). Third, among the m-2 

anchors, the selection of the last anchor brings in the complexity of O(m-2). As a result, the 

total complexity is O(m×(m-1)×(m-2) )= O(m
3
).  

4.4 DV-hop Complexity 

[9][10] give the equation to calculate the estimated position of DV-hop algorithm, NDV-hop (x’, 

y’). That is: 

1
'

:     ( )
'

DV hop
T T

x
N A A A B

y
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 
 
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where            

1 1

2 2

1 1

    

    
  2

               
-

m m

m m

m m m m

x x y y

x x y y
A

x x y y 

  
 

 
  
 
 

   

                                   (11)   

         

2 2 2 2 2 2

1 1 1

2 2 2 2 2 2

2 2 2

2 2 2 2 2 2

1 1 1

   

   
  

                              

m m m

m m m

m m m m m m

d d x x y y

d d x x y y
B

d d x x y y  

     
 

     


 
 
      

                 (12) 

where di is the estimated distance between Nx and Ai.  

The amount of elementary operations (“―” and “×”) in matrix A is 2×2×(m-1) =4×(m-1). 

The amount of elementary operations (“+”, “―” and “×”) in matrix B is 3×m+5×(m-1) =8×m-5.  

A is a (m-1) by 2 matrix, and TA is a 2 by (m-1) matrix. The multiplication of these two 

matrix, T
A A  demands 4×[(m-1) + (m-2)] = 8×m-12 elementary operations (“×” and “+”). Since 

T
A A  is a 2 by 2 matrix, its inverse 1

( )
T

A A
  only needs 9 elementary operations (“/” and “―”). 

Then the multiplication of 1
( )

T
A A

  and TA  needs 2×(m-1)×3=6×(m-1) elementary operations 

(“×” and “+”). The multiplication of 1
( )

T T
A A A

  and B needs 2×[(m-1) + (m-2)] = 4×m-6 
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elementary operations (“×” and “+”). As a result, equation (10) totally demands 30×m-24 

elementary operations (“+”, “―”, “×”, and “/”). So, the calculation complexity for DV-hop is 

O(m). 

4.5 Checkout DV-hop Complexity  

While traditional DV-hop algorithm has three steps, our proposed Checkout DV-hop 

method adds the fourth step. Equation (6) indicates that the additional step has a constant 

amount of operations. So, totally, the calculation complexity for Checkout DV-hop is O(m), the 

same as DV-hop. 

5. Simulation and Analysis 

Using Matlab simulation tools, we set two simulation scenarios with different area sizes.  

Scenario 1 consists of a 50×50m
2
 area with 100 sensor nodes in it, and the communication range 

of sensor nodes is 10 meters. As for Scenario 2, the size of area is 200×200m
2
, number of sensor 

nodes is 500, and the radio range is 50m. For both these two scenarios, all the sensor nodes are 

uniform-randomly distributed inside the simulation area. 

The simulation sets different anchor ratios from 5% to 90%. The anchor ratio is defined as 

the ratio of anchors among the network nodes. For each anchor ratio, the simulations are 

performed 5000 times. Every time, the anchors are randomly selected from the network nodes.      

5.1 Localization Accuracy Simulation 

We consider two metrics for evaluating the performance of localization accuracy. One is 

location error (expressed in percentage of radio range), which is defined as distance(estimated 

position, true position)/RadioRange×100%. Here, distance(estimated position, true position) is the 

distance between a node’s estimated position and its true position. RadioRange is the 

communication range of the sensor nodes. Another metric is the number of cases when the 

estimated position is so close to the true position that their distance is less than 10%× 

RadioRange. This metric, denoted as “number of correct cases” in short, can be regarded as a 

kind of standard deviation, and can evaluate the precision of localization. 

In order to evaluate the localization performance, we simulated five algorithms: our 

algorithm and four existing algorithms, which are DV-hop[9], Improved DV-hop[10], 

Centroid+DVhop, CPE+DVhop. Here, Centroid+DVhop means using Centroid for class two 

nodes and DV-hop for class one nodes; this configuration is necessary since Centroid was not 

developed to work for class 1 nodes.  

Figure 4 shows that our algorithm achieves better accuracy than Centroid, CPE, and DV-

Hop. The location error decreases as anchor ratio increases. For the same anchor ratio, location 

error is smaller when our scheme is applied in same simulation environment. For example, when 



Network Protocols and Algorithms 

ISSN 1943-3581 

2011, Vol. 3, No. 3 

www.macrothink.org/npa 12 

anchor ratio is 5%, our scheme has an average location error of about 86%, whereas others have 

the error of about 97%. In this condition, since most normal nodes belong to class 1, the 

improvement is mainly fulfilled by Checkout DV-hop method. When anchor ratio is 90%, our 

scheme has an average location error of about 30%, whereas others have more than 36%. In this 

context, since most nodes belong to class 1, the improvement is mainly fulfilled by Mid-

Perpendicular method. Thus, the proposed localization system adapts itself to the context 

configuration. 
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Figure 4.  Location Error in Simulation Scenario 1     
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Figure 5.  Location Error in Simulation Scenario 2       

The following tables list the number of cases when the estimated position is close to the true 

position, for different algorithms in different scenarios. Since the communication range of nodes 

in Scenario 1 is 10 meters, the correct cases are those when the distance between estimated 

position and true position is less than 1 meter.  From Table 1, it can be seen that our algorithm 

has the most correct cases. This shows that our algorithm has better precision than Centroid, 

CPE and DV-hop algorithms. The same conclusion can be obtained from Table 2 which 

includes the simulation results of Scenario 2. Since the communication range in Scenario 2 is 50 
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meters, the correct cases in Table 2 are those when the distance between estimated position and 

true position is less than 5 meter. 

Table 1: Comparison of the Number of Correct Cases for Scenario 1 

 

Table 2: Comparison of the Number of Correct Cases for Scenario 2 

 

5.2 Computation Complexity Simulation 

The computation of an algorithm takes certain amount of runtime when it is simulated with 

Matlab on computers. We use this runtime as the metric for evaluating the computation 

complexity. Hence, the longer the runtime of an algorithm, the higher its complexity.  

Generally, sensors have limited computation capability, while the computers that we used 

for simulation possess high-speed powerful CPUs. The computation capacity of device has 

influence on the runtime of algorithm. In order to present this influence, the same simulation is 

done by two computers, which have different computation strength. Computer A has a 3.07GHz 

CPU and 24GB RAM, while computer B has a 1.6GHz CPU and 0.99GB RAM. In Matlab, the 

default data type is double-precision floating point, which requires 64 bits for storage. The 

simulation results are shown in the following figures.  

Figure 6 shows the comparison on the runtime of DV-hop and our proposed Checkout DV-

hop. We can find that these two algorithms have nearly the same computation complexity. That 

means, the additional complexity brought in by our proposed method can be neglected. Figure 7 

presents the comparison on the runtime of Centroid, CPE and our proposed Mid-perpendicular. 

anchor ratio Centroid+DV-hop CPE+DV-hop DV-hop Improved DV-hop our algorithm 

5% 9402 9577 9451 9285 10361 

20% 16710 16898 15407 13663 19026 

40% 17561 17952 15253 12898 19511 

60% 25980 25616 18049 12396 28058 

80% 22017 23162 16946 14663 25587 

anchor ratio Centroid+DV-hop CPE+DV-hop DV-hop Improved DV-hop our algorithm 

5% 93170 93518 92213 92058 99471 

20% 123705 123112 110487 105739 128623 

40% 154288 155906 127633 109046 175128 

60% 159169 162956 113503 111478 193272 

80% 145283 146754 128651 110629 185974 
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When anchor ratio increases, the complexity of the proposed method increases obviously. The 

influence of device computation capacity can also be observed from both figures. 
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Figure 6.  Runtime of Class One Algorithms in Simulation Scenario 1 
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Figure 7.  Runtime of Class Two Algorithms in Simulation Scenario 1 

As shown in Table 3, the theoretical analysis in section 4 is compared with simulation 

results in this section. The theoretical analysis includes both big O notation and the total 

amount of operations, while simulation results are presented as runtime in millisecond.  From 

the table, we can conclude that the theoretical analysis fits well with simulation results.  

 

    Table 3: Comparison of Theoretical Analysis and Simulation results 

ratio of anchor nodes 
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     * : The simulation is fulfilled by Computer B, and the anchor ratio is 30%. 

6. Conclusion 

In this paper, we present a novel range-free localization algorithm for wireless sensor 

networks. Our algorithm works with two classes where the class one with less than three 

neighbor anchors and the class two with at least three neighbor anchors. Checkout DV-hop 

method is proposed for class one nodes, while Mid-Perpendicular method is proposed for class 

two nodes. Simulation results confirm that our proposed algorithms have better accuracy than 

the existing ones (Centroid, CPE and DV-hop). We can conclude that our two class algorithms 

could be a good candidate in improving the location accuracy for any ratio of anchor nodes. In 

addition, we analyze the computation complexity of the related algorithms. Both the theoretical 

analysis and simulation results prove that our Checkout DV-hop has a negligible increase in 

complexity, while Mid-Perpendicular has an acceptable increase. 

References 

[1]   Martusevicius V., Kazanavicius E., “Self-localization System for Wireless Sensor 

Network”. ELEKTRONIKA IR ELEKTROTECHNIKA, vol:7, issue:103, pages:17-20, 2010. 

[2]   Kumar P., Reddy L., Varma S., “Distance measurement and error estimation scheme for 

RSSI based localization in Wireless Sensor Networks”, Fifth IEEE Conference on Wireless 

Communication and Sensor Networks (WCSN), Allahabad, India, Dec. 2009, pages:1-4. 

http://dx.doi.org/10.1109/WCSN.2009.5434802 

[3]   Van N. A., Wyffels J., JP G., “Time of Arrival Based on Chirp Pulses as a means to 

Perform Localization in IEEE 802.15.4a Wireless Sensor Networks”, ADVANCES IN 

ELECTRICAL AND COMPUTER ENGINEERING, vol:10,  issue:2, pages: 65-70, 2010. 

http://dx.doi.org/10.4316/AECE.2010.02011 

[4]   Kovavisaruch L., Ho K.C., “Alternate source and receiver location estimation using 

TDOA with receiver position uncertainties”, IEEE International Conference on Acoustics, 

Speech, and Signal Processing 2005 (ICASSP'05), pages: iv/1065 - iv/1068, March 2005. 

http://dx.doi.org/10.1109/ICASSP.2005.1416196 

[5]   Rong P., Sichitiu M.L., “Angle of Arrival Localization for Wireless Sensor Networks”, 

3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and 

Networks 2006 (SECON '06), vol:1, pages: 374 - 382, Sept. 2006. 

http://dx.doi.org/10.1109/SAHCN.2006.288442 

 Theoretical Analysis Runtime*   (ms) 

Centroid  O(m): 2×m 0.128 

CPE  O(m): 3×m 0.0766 

Mid-perpendicular  O(m
3
)  1.374 

DV-hop  O(m): 30×m-24 1.4112 

Checkout DV-hop  O(m): 30×m-12 1.4886 



Network Protocols and Algorithms 

ISSN 1943-3581 

2011, Vol. 3, No. 3 

www.macrothink.org/npa 16 

[6]   Bulusu N., Heidemann J., Estrin D., “GPS-less Low-Cost Outdoor Localization for Very 

Small Devices”, IEEE Personal Communications, vol: 7, issue: 5, pages: 28-34, 2000. 

http://dx.doi.org/10.1109/98.878533 

[7]   Patro R.K., “Localization in wireless sensor network with mobile beacons”, Proceedings 

of 23rd IEEE Convention of Electrical and Electronics Engineers in Israel, pages:22-24, Sept. 

2004. http://dx.doi.org/10.1109/EEEI.2004.1361078 

[8]   Essoloh M., Richard C., Snoussi H., “Anchor-based distributed localization in wireless 

sensor networks”, 14th IEEE/SP Workshop on Statistical Signal Processing, vol:1, pages:393-

397, Aug 26-29, 2007. http://dx.doi.org/10.1109/10.1109/SSP.2007.4301287 

[9]   Niculescu D., Nath B., “Ad hoc positioning system (APS)”, Proc. Global Telecomm. 

Conf., vol:5, pages:2926-2931, Nov. 2001. http://dx.doi.org/10.1109/GLOCOM.2001.965964 

[10]   Chen H., Sezaki K., Deng P., Hing C., “An improved DV-hop localization algorithm for 

wireless sensor networks”, 3rd IEEE Conference on Industrial Electronics and Applications, 

pages:1557-1561, June 2008. http://dx.doi.org/10.1109/ICIEA.2008.4582780 

[11]  Lee J., Chung W., Kim E., Hong I., “Robust DV-hop Algorithm for Localization in 

Wireless Sensor Network”, International Conference on Control Automation and Systems 

(ICCAS), Korea, pages: 2506 – 2509, October 2010. 

[12]   Linqing G., Anne W., Thierry V., "A Two-level Range-free Localization Algorithm for 

Wireless Sensor Networks", 6th international conference on wireless communications, 

networking, and mobile computing (WICOM 2010), Chengdu, China, pages: 1-4, Sept 2010. 

http://dx.doi.org/10.1109/WICOM.2010.5601377 

[13]   Sheu J.P., Chen P.C., Hsu C.S., “A distributed localization scheme for wireless sensor 

networks with improved grid-scan and vector-based refinement”, IEEE Transsactions on 

Mobile Computing, vol:7, issue:9, pp:1110-1123, 2008. http://dx.doi.org/10.1109/TMC.2008.35 

[14]   Sanjeev A., Boaz B., “Computational Complexity: A Modern Approach”. Cambridge 

University Press, 2009. 
 

 

Copyright Disclaimer 

Copyright reserved by the author(s). 

This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 

 


