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Abstract 

This study examines how residential electricity consumption (KWHC) reacts to changes in the 

price of electricity, the price of natural gas, real income per capita, heating degree days, and 

cooling degree days. Annual frequency data analyzed are for Las Cruces, the second largest 

metropolitan economy in New Mexico. The sample period is 1977 to 2016. An Autoregressive-

Distributed Lag model (ARDL) is employed to obtain long-run and short-run elasticities. In the 

long-run, residential consumption does not respond in a statistically reliable manner to any of the 

explanatory variables. All of the coefficient signs are as expected and those for real per capita 

income and total degree days appear plausible. In the short-run, residential consumption responds 

reliably to variations in all of the variables except per capita income. Somewhat surprisingly, the 

short-run results also include an own-price elasticity that is close to zero, implying that residential 

electricity has a horizontal demand curve in Las Cruces. 
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1. Introduction 

Recent empirical studies have attempted to model residential electricity consumption in 

different service areas. Such studies use data from different metropolitan economies to analyze 

regional residential electricity consumption behavior. Further research for different regions in 

the United States can help provide a better picture on how changes in income and other 

variables affect residential electricity sales. Beyond that, different regions may exhibit 

consumption patterns that differ from those that have been documented for other metropolitan 

economies or national economies. 

In this study, residential electricity sales are examined for the Las Cruces, New Mexico 

metropolitan economy. Las Cruces is part of Dona Ana County with a population of 219,970 

and an estimated nominal per capita income of $37,736 (Fullerton and Fullerton, 2019). 

Although geographically adjacent to El Paso, Texas, a nearby urban economy where residential 

electricity consumption has been analyzed (Fullerton et al, 2016), such an effort has not 

previously been completed for Las Cruces. Because it is the second largest metropolitan 

economy in New Mexico, this omission is somewhat surprising. 

Electricity services are provided to Las Cruces by El Paso Electric Company (EPEC). EPEC is 

a regional electric utility that provides electricity to 400,000 retail and wholesale customers 

within a 10,000 square mile area. The EPEC service territory ranges from Hatch, New Mexico 

to Van Horn, Texas. It has a peak generating capacity of 2,010 MW (EPEC, 2016).  

To examine Las Cruces residential electricity consumption, an autoregressive distributed lag 

(ARDL) modeling approach is utilized. The ARDL approach allows analyzing both long-run 

and short-run consumption relationships. EPEC annual data from 1977-2016 for the Las Cruces 

service area are employed for the analysis. 

Subsequent sections of the study are as follows. A brief summary of related literature is 

provided next. An overview of the theoretical model and methodology is included in the third 

section. Empirical results and policy implications are then reviewed. Principal outcomes are 

encapsulated in the final section. 

 

2. Literature Review 

Early studies analyze residential electricity consumption by estimating the elasticities of 

residential electricity demand using variables such as price, income, and heating and cooling 

degree-days. Cooling and heating degree-days are usually calculated using the difference 

between average temperatures and a base of 65 degrees Fahrenheit. Using structural demand 

and price equations, Halvorsen (1975) finds that the own price elasticity of demand ranges 

from -1.0 to -1.21, suggesting unity in the long run. 

A recurring question is whether electricity demand functions should employ marginal prices or 

average prices. Taylor (1975) finds that both average and marginal price should be included in 

demand equations in order to accurately model residential electricity. That can be problematic 

because data constraints for marginal electricity prices may cause average prices to be the best 
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information available (Halvorsen, 1975). Additional research uses Ramsey specification error 

tests to determine that average revenue price is an adequate measure to determine residential 

electricity demand (Cicchetti and Smith, 1975). Wilder and Willenborg (1975) provide 

evidence that consumers react to monthly bills and do not fully know the marginal price of 

electricity, thus making average price variables appropriate to use. Results in other studies also 

indicate that consumers respond to the average prices implied by monthly electricity bills (Shin, 

1985; Ito, 2014). 

Prior research also examines the effects of income and other variables on household electricity 

usage (Hultman and Ramsey, 1977). Results indicate that electricity price, the price of natural 

gas, and income are some of the biggest determinants of residential demand for electricity. 

Many studies report income elasticities with positive coefficients (Wilder and Willenborg, 

1975), but some do not. In a metropolitan study that includes both average and marginal price 

variables, Roth (1981) obtains results that imply that decreases in real incomes increase 

electricity demand suggesting that electricity is an “inferior good”. A separate study using 

national data also documents similar evidence (Contreras et al, 2009). Results in that effort 

further indicate that weather influences on electricity are asymmetric. 

A number of empirical studies simultaneously estimate long-run and short-run elasticities. 

Chang (1991) employs a generalized functional form method to estimate time-varying 

elasticities. Coefficient estimates are statistically significant and exhibit the hypothesized signs. 

Silk and Joutz (1997) use co-integration techniques to construct an error correction model for 

U.S. residential electricity demand. A subsequent U.S. study uses an autoregressive distributed 

lag (ARDL) approach. The ARDL cointegration technique is appropriate and attractive for 

models with variables of mixed order of integration (Dergiades and Tsolfides, 2008). Findings 

from that ARDL approach report long-run and short-run elasticities that are similar in 

magnitude to those reported in prior studies. 

Epsey and Epsey (2004) conduct a meta-analysis of previous studies to identify factors that 

may affect estimated elasticities. Evidence gathered indicates that there are subtle differences 

among elasticities and it cannot be assumed that every region will have similar estimates. 

Further empirical efforts for residential electricity demand in different countries also uses 

results to indicate regional policy implications based on specific demand characteristics 

(Halicioglu, 2007; Hondroyiannis, 2004; Narayan and Smyth, 2005). 

One recent effort on U.S. residential electricity demand focuses on price and income elasticities 

as important elements for designing regional policies (Alberini et. al., 2011). Results include a 

high own-price elasticity of demand and low-income elasticity. Such findings suggest that price 

increases will cause households to choose less energy-intensive appliances. The low-income 

elasticity also suggests that households will tend to invest in less energy-intensive appliances. 

Recent regional studies also employ out-of-sample model simulations as additional means for 

confirming model reliability. One study for Seattle reports a negative long-run income 

elasticity (Fullerton et. al., 2012). A three-year forecast is used to help evaluate the estimated 

model. A similar study for residential electricity demand in Iran reports temperature as the 

biggest determinant of electricity demand (Pourazarm and Cooray, 2013). It includes a seven-
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year dynamic forecast. Kindred research on residential electricity demand in El Paso uses an 

ARDL approach (Fullerton et al, 2016). The long-run income elasticity coefficient is negative 

and a three-year out of sample forecast is conducted to evaluate expected demand growth. 

In this effort, residential electricity consumption is examined for Las Cruces, New Mexico. Las 

Cruces is only forty miles from El Paso, but has a different economic base and somewhat 

different weather patterns (Fullerton and Fullerton, 2019). There is no guarantee, therefore, that 

residential electricity consumption patterns in this smaller metropolitan economy will match 

what has been documented for the larger, nearby urban economy.  

 

3. Theoretical Framework 

A demand function for Las Cruces residential electricity consumption is specified using 

economic and weather variables. Because non-zero amount data are utilized, the variables are 

transformed using natural logarithms prior to estimation (Gelman and Hill, 2006). Expected 

coefficient signs are listed below Equation (1). 

 

lnKWHC t = a0 + a1 lnPE t + a2 lnPNGt + a3 lnYCAPt + a4 lnHDDt + a5 lnCDDt + ut    

(-)        (+)          (+)         (+)          (+)   (1) 

An autoregressive distributed lag model (ARDL) estimation approach is employed similar to 

that utilized for the nearby El Paso portion of the EPE service area (Fullerton et. al, 2016). The 

ARDL model employs a bounds testing procedure that allows for cointegration regardless of 

whether the variables have I(0) or I(1) orders of integration (Dergiades and Tsoulfidis, 2008). 

The null hypothesis of no cointegration is rejected using an F-test. More specifically, the 

computed F-statistic exceeds the upper bound of the test (Pesaran et. al, 2001).  

Equation (2) shows the general ARDL specification (Pesaran et. al, 2001). In Equation (2), q 

represents the optimal number of dependent variable lags and pi is used for the optimal number 

of lags for each explanatory variable. The error term is represented by v with t as the time 

subscript. 

 

lnKWHC t = 0 +  i lnKWHC t− i +i=0

q

 1i lnPE t− i +i=0

p1

 2i lnPNGt− i +i=0

p2

 3i lnYCAPt− ii=0

p3



+ 4 i lnHDDt− i +i=0

p4

 5i lnCDDt−1 + v ti=0

p5


 

(2) 

Equation (3) shows how the long-run coefficients for Equation (2) are calculated from the 

parameters in Equation (3). In Equation (4), j represents an index for the independent variables. 

The long-run coefficients are later used to calculate the residuals that will be part of the short-

run error correction model if cointegration is present.  

 

a j =  ji /i=0

p j

 (1−  i)i=1

q

                   (3) 



 Research in Applied Economics 

ISSN 1948-5433 

2020, Vol. 12, No. 3 

                                         http://rae.macrothink.org 23 

The variables in Equation (2) are tested for cointegration by employing a bounds test (Pesaran 

et al, 2001). In Equation (4), 

 

  is a first-difference operator and w is stochastic error term. 

Narayan (2005) presents a set of bounds test critical values that are used for both I(0) and I(1) 

cases when samples contain between 30 and 80 observations. The calculated F-statistic must 

be larger than the upper bound to reject the null hypothesis of no cointegration 

 

Ho = b6 = b7 = b8 = b9 = b10 = b11 = 0 . When the F-statistic is between the upper and lower 

bounds, the test is inconclusive. An F-statistic below the lower bound will fail to reject the null 

hypothesis.  

 

 

 lnKWHC t = b0 + di lnKWHC t− i +i=0

q−1

 b1i lnPE t− i +i=0

p1 −1

 b2i lnPNGt− i +i=0

p2−1



b3i lnYCAPt− ii=0

p3−1

 + b4 i lnHDDt− i +i=0

p4 −1

 b5i lnCDDt− i +i=0

p5 −1

 b6 lnKWHC t−1 +

b7 lnPE t−1 + b8 lnPNGt−1 + b9 lnYCAPt−1 + b10 lnHDDt−1 + b11 lnCDDt−1 +wt

(4) 

If a cointegrating relationship exists, a short-run error correction model is estimated. The 

residuals from Equation (2) are lagged and  is included as a regressor as shown in 

Equation (5). The resulting coefficient estimate for 

 

  is known as an error correction term. 

The hypothesized coefficient sign for the error correction term is negative. When that condition 

is met, 

 

  provides an estimate of the rate at which a short-run departure from the long-run 

equilibrium will dissipate. Equation (5) shows the specification for the short-run error 

correction model. 

 

 lnKWHC t = 0 + i lnKWHC t− i +i=0

q−1

 1i lnPE t− i +i=0

p1 −1

 2i lnPNGt− i +i=0

p2−1



3i lnYCAPt− ii=0

p3−1

 + 4 i lnHDDt− i +i=0

p4 −1

 5i lnCDDt− i +ut−1 + ti=0

p5 −1


   (5) 

 

4. Data 

Annual frequency data are collected from 1977 to 2016. Residential consumption in Las Cruces 

is measured in kilowatt-hours (KWH) using New Mexico billed sales data provided by EPEC. 

At least one recent study indicates that consumers respond to average prices (Ito, 2014). For 

this effort, average revenue per KWH is used as the own price variable. Revenue, KWH sales, 

and customer data are collected from EPEC archives and EPEC Form 1 filings with Federal 

Energy Regulatory Commission (FERC, 2017). All sample data employed are listed in Table 

6 as an appendix to the study. 

Real per capita income is used to account for income effects on residential electricity 

consumption. Real per capita income is calculated in constant 2009 dollars using the personal 

consumption expenditures (PCE) deflator (BEA, 2018b). The price variables are also deflated 

to constant 2009 dollars using the PCE deflator. Per capita income data for Las Cruces and the 
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personal consumption expenditures deflator are collected from the Bureau of Economic 

Analysis (BEA, 2018a). Table 1 lists all of the data and units of measure. 

 

Table 1. Variable Definitions and Sources 

Variable Definition Source 

KWHC 
Las Cruces electricity consumption per customer, 

measured in KWH sales per residential customer 
El Paso Electric 

KWH 
Las Cruces electricity consumption, measured in KWH 

sales 
El Paso Electric 

PE 
Real Electricity Price, measured in average $ revenue per 

KWH sold, base year 2009 

El Paso Electric FERC Form-1 

Filings 

LCPNG 
Las Cruces Real Natural Gas Price, measured in average 

$ price per CCF, base year 2009 

Las Cruces Utilities, Energy 

Information Association 

YCAP 
Las Cruces Real Per Capita Income, measured in 

thousands of dollars, base year 2009 

U.S. Bureau of Economic 

Analysis  

HDD 
Heating Degree Days, Sum of Average Daily 

Temperatures under 65° Base 

National Oceanic and 

Atmospheric Administration 

Northeast Regional Climate 

Center 

CDD 
Cooling Degree Days, Sum of Average Daily 

Temperatures over 65° Base 

National Oceanic and 

Atmospheric Administration 

Northeast Regional Climate 

Center 

CUST Average Number of Residential Customers, thousands 
El Paso Electric FERC Form-1 

Filings 

POP Las Cruces Population, thousands 
U.S. Bureau of Economic 

Analysis  

 

In Las Cruces, natural gas is a substitute for electricity. Accordingly, a natural gas price per 

100 cubic feet (CCF) variable is also included in the sample. Historical data are collected from 

Las Cruces Utilities for 1996 through 2016 period. To approximate missing data, natural gas 

price data for New Mexico are collected from the Energy Information Administration (EIA, 

2017). Equation 1 specifies the Las Cruces natural gas price as a function of the state gas price 

and is used to provide estimates for the missing values between 1977 and 1995 (Friedman, 

1962). Table 2 displays the estimated regression results. The natural gas price for New Mexico 

coefficient is statistically significant at the 5-percent level. A chi-squared autocorrelation test 

confirms that the residuals for Equation (6) are not serially correlated.  

 

LCPNGt =b0+b1NMPNGt+ut                (6) 
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Table 2. Las Cruces Natural Gas Price Regression Output 

Dependent Variable: LCNGP       

Method: Least Squares         

Sample (adjusted): 1996 2016       

Included observations: 21 after adjustments     

          

Variable Coefficient Std. Error t-Statistic Prob.  

C -0.316 0.071 -4.463 0.0003 

NMNGP 0.857 0.077 11.169 0.000 

          

R-squared 0.8678   Mean dependent var   0.4535 

Adjusted R-squared 0.8609   S.D. dependent var   0.1979 

S.E. of regression 0.0738   Akaike info criterion   -2.284 

Sum squared resid 0.1035   Schwarz criterion   -2.185 

Log likelihood 25.982   Hannan-Quinn criter.   -2.262 

F-statistic 124.744   Durbin-Watson stat   1.500 

Prob(F-statistic) 0.000       

Note: These results are used to simulate Las Cruces natural gas prices for 1977-1995. 

 

Prior studies indicate that weather influences residential electricity consumption in statistically 

significant manners (Contreras et al, 2009; Pourazarm and Cooray, 2013). To account for 

weather in the demand equation for electricity demand, data for heating degree days (HDD) 

and cooling degree days (CDD) are collected by the New Mexico State University (NMSU) 

weather station and downloaded from the National Oceanic and Atmospheric Administration 

Northeast Regional Climate Center (NOAA, 2018). HDD measures the number of degrees that 

each daily average temperature is below 65 degrees Fahrenheit. CDD measures the number of 

degrees that each daily average temperature is above 65 degrees Fahrenheit.  

The summary statistics presented in Table 3 show that the average electricity consumption per 

customer in Las Cruces is 7,189 KWH per year, the standard deviation is 664 KWH per 

customer, with a median of 7,113 KWH. The minimum electricity consumption per customer 

for this sample period is 5,879 KWH and the maximum is 8,430 KWH, a range of 2,551 KWH. 

The skewness coefficient is 0.26, indicating a slightly right skewed distribution that is roughly 

symmetric. The kurtosis is 2.08, indicating the data are fairly platykurtic relative to a Gaussian 

distribution, but the coefficient of variation is still only 0.09. 
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Table 3. Data Summary Statistics 

  KWHC PE PNG YCAP 

Mean 7,189 0.142 0.425 22,377 

Standard Deviation 664.3 0.026 0.168 4,595 

Coef. of Variation 0.092 0.186 0.395 0.205 

Median 7,113 0.131 0.380 20,568 

Maximum 8,430 0.193 0.824 29,654 

Minimum 5,879 0.107 0.215 16,246 

Range 2,551 0.087 0.609 13,408 

Skewness 0.265 0.677 1.078 0.287 

Kurtosis 2.083 2.055 3.179 1.513 

 

  HDD CDD CUST 

Mean 2,699 1,929 56,538 

Standard Deviation 275.5 220.5 18,522 

Coef. of Variation 0.102 0.114 0.328 

Median 2,683 1,859 56,485 

Maximum 3,346 2,362 84,673 

Minimum 2,196 1,502 25,152 

Range 1,150 860 59,521 

Skewness 0.110 0.188 -0.026 

Kurtosis 2.300 1.870 1.749 

Notes:  

The sample period is 1977 – 2016. 

All income and price data are measured in 2009 constant dollars. 

 

The average real price of electricity in 2009 constant dollars is estimated to be $0.14 per KWH, 

the standard deviation is $0.03 per KWH, with a median of $0.13. The minimum average real 

price of electricity is $0.11 per KWH and the maximum is $0.19 per KWH, a range of $0.09 

per KWH. The skewness is 0.68, indicating that the real price of electricity is slightly right 

skewed. The kurtosis is 2.06 indicating the data are platykurtic and the coefficient of variation 

is 0.18.  

The real average price of natural gas in Las Cruces is $0.43 per CCF, the standard deviation is 

0.17, with a median of $0.38 per CCF. The minimum price of natural gas in Las Cruces during 

the sample period is $0.22 per CCF and the maximum is $0.82 per CCF, giving a range of 

$0.60 per CCF. The skewness of the price of natural gas in Las Cruces is 1.08, indicating that 

the distribution is right skewed. The kurtosis is 3.18 and the coefficient of variation is 0.40.  

The average Las Cruces real income per capita is $22,377. The standard deviation is $4,595 
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and the median is $20,568. The minimum per capita income is $16,246 and the maximum is 

$29,654, implying a range of $13,408. The skewness of Las Cruces income per capita is 0.29, 

reflecting overall symmetry. The kurtosis is found to be 1.51 indicating the data are fairly 

platykurtic, but the coefficient of variation is still only 0.21.  

The average number of heating degree days in Las Cruces is 2,699 per year. The standard 

deviation is 275 days with a median of 2,683 days. The minimum number of heating degree 

days is 2,196 days with a maximum of 3,346 days, and the range is 1,150 days. With a skewness 

statistic of 0.11, HDD is largely symmetric. The fourth moment of 2.30 indicates that the 

distribution of HDD is platykurtic, but the coefficient of variation is only 0.10.  

The average number of cooling degree days in Las Cruces is 1,929 per year. The standard 

deviation is 221 days with a median of 1,859. The minimum number of cooling degree days is 

1,502 with a maximum of 2,362, yielding a range of 860 days. The CDD skewness is 0.19, 

substantially symmetric. The kurtosis is 1.87, indicating relatively thick distribution tails, but 

the coefficient of variation is a fairly small 0.11.  

The average number of residential customers in Las Cruces during the 1977-2016 sample 

period is 56,538. The standard deviation is 18,522 with a median of 56,485 customers. The 

minimum number of customers is 25,152, the maximum number is 84,673, and the range is 

59,521. The skewness statistic of -0.03, indicates near perfect symmetry. The customer data 

are platykurtic and the coefficient of variation is 0.33.  

  

5. Empirical Results 

Initial testing with CDD and HDD employed as separate independent variables, as shown in 

Equations 3, was not successful due to multicollinearity. To reduce this problem, the weather 

variables are combined into one degree days variable, DD = CDD + HDD. This procedure has 

been employed previously for residential electricity usage analysis (Fullerton et al, 2016). 

Although this step imposes parameter homogeneity with respect to hot and cold weather effects 

on household electricity consumption, the coefficient estimates are more plausible, estimation 

diagnostics improve, and this convention is employed for the remainder of the study. Imposing 

weather impact symmetry in this manner may not, however, always be advisable (Chang et al, 

2016). 

Phillips-Perron unit root tests indicate that the variables are integrated of an order of I(0) or 

I(1), allowing empirical analysis to be conducted using an ARDL modeling approach. The 

maximum lag length selected, using an Akaike information criterion, for any of the explanatory 

variables is three years. The resulting specification is an ARDL (3, 3, 3, 3, 2) model for 

residential electricity consumption in the Las Cruces service area. 

A Breusch-Godfrey serial correlation LM test is conducted for a null hypothesis of no serial 

correlation. The computed Chi-squared statistic for up to five years indicates no serial 

correlation. The F-statistic for H0: b5 = b6 = b7 = b8 = b9 = 0 is 3.74. In the bounds test context, 

this value is higher than the 10-percent upper bound critical value, indicating cointegration. 
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Furthermore, the CUSUM and CUSUMSQ test results presented in Figure 1 and Figure 2 show 

stability with no computed statistics surpassing the 5-percent bounds. 

 

Figure 1. CUSUM Results for Resdential Electricity Consumption 

 

 

Figure 2. CUSUMSQ Results for Residential Electricity Consumption 

 

The long-run coefficients for the estimated ARDL model are listed in Table 4. Although all of 

the long-run parameters exhibit the hypothesized signs discussed in the previous section, the 

links are not very reliable and do not satisfy the 5-percent significance criterion. The own-price 

elasticity coefficient is -0.08, indicating that a 10 percent increase in the price of electricity will 
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be associated with less than a 1 percent reduction in residential electricity usage. That indicates 

that Las Cruces household electricity demand hardly responds to rate increases. A flat demand 

curve is not completely surprising for this region of the United States. Fullerton et al (2016) 

document an upward sloping demand function for nearby El Paso. Horizontal electricity 

demand curves for normal goods can occur when the income effect offsets the substitution 

effect (Vandermeulen, 1972). During the sample period, the real price of electricity did not 

keep pace with real per capita income and that may contribute to this outcome (Fullerton et al, 

2015).  

 

Table 4. ARDL Long-Run Coefficients for ARDL(3, 3, 3, 3, 2) Model 

Variable Coefficient Std. Error t-Statistic Prob.   

LOG(PE) -0.0843 0.3514 -0.2400 0.8131 

LOG(PNG) 0.0280 0.1021 0.2739 0.7873 

LOG(YCAP) 0.3806 0.3438 1.1070 0.2829 

LOG(DD) 0.4601 0.3361 1.3689 0.1879 

 

The long-run parameter estimate for the price of natural gas in Table 4 is 0.028. That is highly 

inelastic and indicates that fluctuations in natural gas prices do not affect residential electricity 

usage very much in this EPEC service area. That cross-price coefficient indicates that a 1 

percent increase in the price of natural gas will be accompanied by a 0.028 percent increase in 

residential electricity demand. While very small, the positive sign of the cross-price elasticity 

implies that, over the long-run, natural gas and electricity are treated as highly imperfect 

substitute goods by residences in Las Cruces. The magnitude of the cross-price elasticity is 

much smaller than what is reported for the geographically adjacent EPEC service area in El 

Paso (Fullerton et al., 2016). 

The long-run slope coefficient estimate for real per capita income in Table 4 has a reasonable 

size (Espey and Espey, 2004). The income elasticity parameter is positive, suggesting that, over 

the long-run, electricity is treated as a normal good by Las Cruces households. That is opposite 

of what is reported for the nearby El Paso service area (Fullerton et al, 2016) and underscores 

the importance of conducting independent research for individual metropolitan economies, at 

least within the realm of energy economics. The income coefficient in Table 4 is 0.38, 

indicating that electricity is a necessity for las Cruces households (Phu, 2020). It further 

indicates that a 10-percent increase in real per capita income will lead to a 3.8 percent increment 

in residential electricity demand in the long-run. Because Las Cruces is a growing urban 

economy, that implies that EPEC will face more generating capacity pressures from this service 

area than the neighboring one to the south. 

The composite explanatory variable for the weather, cooling degree days plus heating degree 

days, exhibits the hypothesized parameter sign with a coefficient of 0.46. The DD parameter 

indicates an inelastic response as a 10 percent increase in annual degree days will increase 

residential electricity demand by 4.6 percent. The coefficient magnitude indicates that there 
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inclement weather leads to fairly substantial impacts on long-run residential electricity 

consumption in the Las Cruces service area. 

Estimation results for the short-run error correction model are listed in Table 5. The own-price 

coefficients sum to -0.45 and satisfy the 5-percent criterion. That is relatively close to the short-

run elasticities reported for multiple regions across the United States (Espey and Espey, 2004).  

 

Table 5. ARDL Error Correction Model Coefficients 

Variable Coefficient Std. Error t-Statistic Prob.   

C 2.0371 0.7172 2.8402 0.0109 

DLOG(KWHC(-1)) -0.6301 0.1294 -4.8707 0.0001 

DLOG(KWHC(-2)) -0.1873 0.1035 -1.8093 0.0871 

DLOG(PE) -0.4947 0.1372 -3.6060 0.0020 

DLOG(PE(-1)) 0.2763 0.0929 2.9741 0.0081 

DLOG(PE(-2)) -0.2334 0.0909 -2.5674 0.0194 

DLOG(PNG) 0.0498 0.0232 2.1477 0.0456 

DLOG(PNG(-1)) -0.0498 0.0232 -2.1511 0.0453 

DLOG(PNG(-2)) 0.0405 0.0317 1.2760 0.2182 

DLOG(YCAP) 0.0882 0.2246 0.3926 0.6992 

DLOG(YCAP(-1)) -0.3988 0.2100 -1.8991 0.0737 

DLOG(YCAP(-2)) 0.3216 0.2089 1.5395 0.1411 

DLOG(DD) 0.3602 0.0879 4.0959 0.0007 

DLOG(DD(-1)) 0.2736 0.1292 2.1168 0.0485 

 u(-1) -0.5543 0.1950 -2.8422 0.0108 

Diagnostic statistics for the underlying ARDL model:     

R-squared 0.9208 Mean dependent var  0.0035 

Adjusted R-squared 0.8704 S.D. dependent var  0.0615 

S.E. of regression 0.0221 Akaike info criterion  -4.4936 

Sum squared resid 0.0108 Schwarz criterion  -3.8406 

Log likelihood 98.1324 Hannan-Quinn criter.  -4.2634 

F-statistic 18.2729 Durbin-Watson stat  1.6879 

Prob(F-statistic) 0.0000       

 

The natural gas price coefficients sum to 0.04 and exhibit the hypothesized positive sign. The 

highly inelastic value indicates that natural gas price fluctuations do not affect residential 

electricity usage very noticeably in Las Cruces. Collectively, the results indicate that, in the 

short-run, natural gas is treated as a weak substitute for electricity by households in the Mesilla 

Valley. That result is similar to what has been reported for other regions (Phu, 2020). 

The real per capita income coefficients sum to 0.01 and exhibit the hypothesized positive sign, 

albeit with computed t-statistics that fail to surpass the 5-percent significance threshold. The 

highly inelastic estimate indicates that income fluctuations do not affect residential electricity 
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demand in the short-run in Las Cruces. Although the estimate indicates that the relationship is 

not overly strong, electricity is found to be treated as both a normal good and a necessity in the 

short-run by Las Cruces households. 

The composite explanatory variable used to account for weather effects on residential 

electricity demand is DD, the sum of annual cooling degree days and heating degree days. 

Fluctuations in DD are found to reliably impact residential electricity consumption in the short-

run. The coefficients that sum to 0.63 and are positive as hypothesized. Both hot and cold 

weather lead residential customers to increase the use of electricity in this desert economy. The 

sensitivity of households to extreme weather is more pronounced, and statistically reliable, in 

Las Cruces than what has been reported for more temperate regions of the global economy 

(Csereklyei, 2020). 

The error correction parameter is negative as hypothesized. The magnitude of the error 

correction coefficient indicates that 55 percent of any deviation from the long-run equilibrium 

will dissipate within a year. As a result, approximately 1.8 years are necessary for any 

departures from equilibrium to fully dissipate. That is a shorter amount of time than what has 

been documented for residential electricity consumption the nearby metropolitan economy of 

El Paso (Fullerton et al, 2016). 

 

6. Conclusion 

Residential electricity usage continues to be the focus of substantial research effort. Given the 

importance of electric energy in modern economies, that is to be expected. Advances in 

econometric methods and data availability also encourage more effort in this branch of the 

discipline. 

Historically, one of the gaps in this literature has been empirical analysis of residential 

electricity demand in small and medium sized metropolitan economies. That has probably 

resulted from limited data coverage in these areas. In spite of being the second largest economy 

in the state, Las Cruces, New Mexico is one of those urban areas for which comparatively little 

energy consumption research has been conducted. 

The results obtained vary in several notable ways from what has been documented for El Paso, 

Texas, a larger metropolitan economy which is located a mere 40 miles away from the Mesilla 

Valley. Those outcomes highlight the importance of examining more smaller urban economies 

individually rather than assuming that regional energy demand always follows the same usage 

patterns. Additional studies of electricity consumption in Las Cruces region are warranted. An 

obvious candidate is small commercial and industrial usage, as well as public and non-profit 

consumption. Important demand differences for those customer categories cannot be ruled out 

at this juncture. 
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Appendix 

Table 6. Historical Data Appendix 

Year KWHC PE PNG YCAP HDD CDD 

1977 7,537.50 0.123 0.215 16.246 2987 1755 

1978 7,887.04 0.141 0.272 16.714 3029 1795 

1979 7,139.32 0.124 0.274 16.530 3346 1502 

1980 6,085.53 0.158 0.332 16.307 3100 1762 

1981 7,214.34 0.181 0.376 16.901 2717 1742 

1982 5,879.24 0.183 0.523 17.126 3024 1685 

1983 6,739.17 0.193 0.580 17.847 3069 1723 

1984 6,619.95 0.193 0.610 18.082 3029 1806 

1985 6,782.23 0.187 0.606 18.478 3008 1649 

1986 6,450.10 0.184 0.533 18.888 2683 1765 

1987 6,555.52 0.178 0.400 18.874 3046 1662 

1988 6,652.86 0.177 0.408 18.387 2825 1715 

1989 6,627.82 0.170 0.444 19.119 2606 2072 

1990 6,531.52 0.166 0.405 19.192 2788 1943 

1991 6,572.14 0.163 0.349 19.263 2862 1616 

1992 6,752.98 0.152 0.254 19.812 2952 1786 

1993 6,655.92 0.149 0.323 19.796 2670 1876 

1994 6,796.17 0.142 0.327 19.610 2513 2200 

1995 6,594.22 0.141 0.250 20.491 2298 1839 

1996 6,757.35 0.131 0.271 20.393 2254 1841 

1997 6,810.04 0.132 0.324 20.646 2314 1979 

1998 6,836.74 0.134 0.316 21.582 2464 1813 

1999 6,743.44 0.124 0.313 21.632 2196 1727 

2000 7,092.48 0.120 0.303 22.163 2444 2231 

2001 7,133.73 0.126 0.297 24.256 2606 2181 

2002 7,321.17 0.123 0.316 24.951 2683 2185 

2003 7,477.78 0.125 0.574 25.596 2458 2275 

2004 7,393.69 0.122 0.652 26.379 2755 1826 

2005 7,587.76 0.127 0.818 27.393 2634 2068 

2006 7,548.59 0.129 0.824 27.344 2479 1954 

2007 7,847.10 0.126 0.733 27.840 2629 2021 

2008 7,609.74 0.130 0.819 27.855 2683 1737 

2009 7,904.30 0.121 0.421 28.575 2622 2090 

2010 8,293.19 0.119 0.452 28.845 2834 2081 

2011 8,430.32 0.116 0.406 28.694 2854 2362 

2012 8,390.02 0.111 0.283 28.690 2420 2209 

2013 8,200.32 0.114 0.384 27.304 2876 2134 

2014 7,866.91 0.118 0.441 28.052 2350 2075 

2015 8,096.35 0.110 0.298 29.586 2571 2227 

2016 8,139.24 0.107 0.277 29.654 2301 2234 
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Year CUST POP KWH PCE 

1977 25,333 88.30 190,947,495 0.341 

1978 25,152 92.19 198,374,947 0.365 

1979 29,069 93.74 207,532,884 0.397 

1980 35,358 97.01 215,172,027 0.440 

1981 29,730 99.62 214,482,216 0.478 

1982 37,478 103.45 220,342,299 0.505 

1983 33,951 107.63 228,801,449 0.526 

1984 35,949 112.47 237,980,754 0.546 

1985 37,714 116.32 255,784,886 0.566 

1986 39,472 120.47 254,598,483 0.578 

1987 41,221 125.03 270,224,895 0.596 

1988 42,985 130.02 285,973,059 0.620 

1989 44,515 132.96 295,037,547 0.646 

1990 45,837 136.59 299,385,489 0.674 

1991 47,270 141.23 310,665,224 0.697 

1992 48,912 147.00 330,301,610 0.715 

1993 50,616 153.05 336,895,928 0.733 

1994 52,431 157.53 356,329,852 0.748 

1995 54,150 161.01 357,076,759 0.764 

1996 55,769 165.62 376,850,884 0.780 

1997 57,201 169.08 389,541,224 0.793 

1998 58,588 172.06 400,551,097 0.799 

1999 60,409 173.89 407,364,168 0.811 

2000 61,889 175.10 438,946,495 0.831 

2001 62,856 176.50 448,398,005 0.847 

2002 64,294 178.46 470,707,370 0.859 

2003 65,879 182.05 492,628,734 0.876 

2004 68,255 184.94 504,656,261 0.897 

2005 71,120 189.20 539,641,286 0.923 

2006 73,062 193.70 551,514,903 0.947 

2007 75,664 197.85 593,743,154 0.971 

2008 77,283 200.86 588,103,907 1.001 

2009 78,529 205.40 620,716,793 1.000 

2010 79,601 210.20 660,146,425 1.017 

2011 80,169 212.98 675,850,676 1.041 

2012 80,694 214.43 677,024,526 1.061 

2013 81,992 214.05 672,360,615 1.075 

2014 82,817 214.06 651,513,800 1.092 

2015 83,632 214.30 677,113,937 1.095 

2016 84,673 214.21 689,174,035 1.108 
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