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Abstract 

Optimal control theory can be employed to gain novel insights on the self-organization and 

structure of networks. We develop a Cournot differential game to analyse the evolutionary 

dynamics of firm connections within a network. We determine the feedback (Markovian) Nash 

equilibrium strategies and the steady state of the model and identify the key factors affecting 

the strategic choice of network firms. Our model confirms the empirical evidence that network 

firms tend to increase their own connections over time; moreover, such growing connections 

are mainly affected by the market size and the spillover rate. 
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1. Introduction 

Network agreements among firms refer to collaborative relationships and partnerships between 

different companies, mostly small-medium enterprises. Networks are important for several 

reasons. First, firms can share resources, knowhow, and capabilities (Bullinger et al., 2004); 

second, cooperation fosters product and process innovation allowing firms to become more 

competitive (Teirlinck and Spithoven, 2013); third, partnership can provide access to larger 

international markets (Ojala, 2009) and increase bargaining power and reputation (Lechner et 

al., 2006); finally, network agreements allow firm to share risks, mitigating uncertainty by 

reducing production and transaction costs (Croom, 2001). The strength of business networks 

is that enterprises, while cooperating with each other, maintain their complete autonomy and 

specialization; moreover, being a member of a network generates significant improvements in 

economic performance of firms such as total turnover and added value (Cisi et al., 2020). 

Given the positive externalities generated by the participation in a network, we should observe 

both an increase in the number of networks and a growth in their average size over time. 

Tomasiello et al. (2016) studied the evolution of R&D networks for different manufacturing 

sectors over a 24-year period distinguishing two contrasting phases: a rise phase, where 

networks grow in number and density (number of links), and a fall phase, where alliances are 

more fragmentated. However, in both phases, network density is higher in high-tech industries 

such as Computer Software, Electronic Components and Pharmaceutical, characterised by high 

levels of spillovers. Carbonara (2002) analyses the evolution of Italian Industrial Districts, 

showing that the formation of structured inter-firm networks is mainly driven by the strategies 

of growth adopted by the leader firms. Hite and Hesterly (2001) propose that the networks 

evolve according to firm’s resource challenges and needs. In the beginning, networks are 

characterised by socially embedded ties while, in the final stage of their evolution, ties are 

based on a calculation of economic costs and benefits. 

Further evidence comes from Italy. Figure 1 reports the average number of links formed in 

Italy by each network firm over the 2010-2023 period.1 It emerges that network firms have 

doubled their own partners within ten years.  

From a theoretical perspective, several papers have described the process of business network 

formation, providing important insights about the key factors affecting such process. The 

seminal paper by Goyal-Moraga Gonzalez (2001) studied the stability of R&D networks 

among Cournot oligopolists, showing that firms tend to form increasingly dense networks even 

at the expense of aggregate profits. Opposite results were obtained by Goyal and Joshi (2003) 

which extended the analysis to Bertrand competition. They showed that in a context 

characterised by strong price competition, firms tend to form small stable networks arising a 

trade-off between stability and efficiency in networks. 
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Figure 1. The Average Number of Links Formed by One Firm within a Network, Increased 

from 2010 to 2023. Source: Our Elaboration on InfoCamere Data.2 

 

Correani et al. (2014) showed that the number of firms participating in a network is strongly 

affected by market size, spillover rate (absorptive capacity) and the number of potential 

partners. More recently, Di Dio and Correani (2017, 2020), proposed theoretical models to 

examine network formation in Hotelling-type oligopolies. They found that networks improving 

product quality are generally denser than those driven by process innovation. Moreover, the 

number of network firms increases when firms feature low vertical differentiation but high 

horizontal differentiation. Also in these models, the spillover rate plays a key role in 

determining the structure of the network. 

All the above-mentioned contributions share the common feature of considering static games 

which, however, does not allow to study the growth process of the number of connections 

within a business network over time. Our paper contributes to this strand of the literature by 

adopting a dynamic approach. We consider a Cournot oligopoly where each firm can decide to 

cooperate with the others forming pair-wise collaboration links to reduce its own marginal cost. 

We suppose such positive externality to evolve according to a dynamic process depending on 

the number of connections of each single firm, the rate of spillover, and the rate of decay. 

Therefore, our model is structured as a differential game where each firm’s strategies (output 

and number of connections) evolve over time, possibly converging to a stable equilibrium. We 

replicate the growing trend of firm connections within a network which is observed in the real 

world and identify the key factors affecting the dynamic path. First, we identify the feedback 

(Markovian) Nash equilibrium strategies which converge to a unique steady state; second, we 

show that each firm’s connections increase with market size and spillover rate.  

The rest of the paper is organised as follows. Section 2 presents the model and discuss the main 

results. Section 3 concludes. In the appendix we report the proof of the main results. 
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2. The Model 

Consider an oligopoly market over an infinite (continuous) time horizon, 𝑡 ∈ [0, ∞). Firms are 

Cournot competitors and supply a homogeneous good, whose market demand function is 𝑝𝑡 =

𝑎 − 𝑏𝑄𝑡  at any time 𝑡 ∈ [0, ∞), with N denoting the number of firms, 𝑎 > 0, 𝑏 > 0 and 

𝑄𝑡 = ∑ 𝑞𝑖𝑡
𝑁
𝑗=1  being the sum of all firms' output levels, 𝑖 ∈ {1,2,3, … . , 𝑁}. Production takes 

place at a constant returns to scale, with a constant marginal cost 𝑐 ∈ (0, 𝑎), common to all 𝑁 

firms. Moreover, each firm 𝑖 can form alliances (pair-wise collaboration links) with other firms, 

in order to reduce its own marginal cost. Thus, firm 𝑖’s instantaneous cost function is 𝐶𝑖 =

(𝑐 − 𝑥𝑖𝑡)𝑞𝑖𝑡  where 𝑥𝑖𝑡  indicates the efficiency (cost reduction) firm 𝑖  obtains from the 

collaborative links. The level of cost reduction 𝑥𝑖𝑡 evolves over time according to the following 

dynamics: 

𝑑𝑥𝑖𝑡

𝑑𝑡
≡ �̇�𝑖𝑡 = 𝛼𝑚𝑖𝑡 − 𝛿𝑥𝑖𝑡,  𝑥𝑖0 = 0                              (1) 

where 0 ≤ 𝑚𝑖𝑡 ≤ 𝑁 − 1 is the number of links formed by firm 𝑖, 𝛼 > 0 is the spillover rate 

and 𝛿 > 0 is the decay rate of 𝑥𝑖𝑡. According to equation (1), marginal costs are declining in 

the number of links (see Goyal and Joshi, 2003). Forming a network of alliances is costly and 

we assume a quadratic cost function given by 𝐶𝑚𝑖 = 𝛾𝑚
𝑚𝑖𝑡

2

2
 with 𝛾𝑚 > 0. 

At this point, firm 𝑖’s instantaneous profit function writes as follows: 

𝜋𝑖𝑡 = [𝑎 − 𝑏 ∑ 𝑞𝑖𝑡
𝑁
𝑗=1 ]𝑞𝑖𝑡 − (𝑐 − 𝑥𝑖𝑡)𝑞𝑖𝑡 − 𝛾𝑚

𝑚𝑖𝑡
2

2
 .                     (2) 

Firm 𝑖 chooses 𝑞𝑖𝑡 and to maximise the discounted individual profit flow: 

𝐽𝑖𝑡 = ∫ 𝜋𝑖𝑡𝑒−𝜌𝑡∞

0
𝑑𝑡,                                       (3) 

s.t. the state dynamics (1). Parameter 𝜌 > 0 represents the constant discount factor common to 

all firms in the industry. A feedback solution of the problem, which allows the firms to choose 

their quantities 𝑞𝑖𝑡 and number of cooperative links 𝑚𝑖𝑡 contingent upon the state of the game, 

has to satisfy the following Bellman equation: 

𝜌𝑉𝑖𝑡 = max
𝑞𝑖𝑡,𝑚𝑖𝑡

{𝜋𝑖𝑡 + 𝑑𝑉𝑖𝑡
𝑑𝑥𝑖𝑡

�̇�𝑖𝑡},                                 (4) 

where we set 𝑉𝑖𝑡 = 𝐴 + 𝐵𝑥𝑖𝑡 + 𝐷𝑥𝑖𝑡
2 . Solving the problem and imposing symmetry across 

quantities and number of links, i.e. 𝑞𝑖𝑡 = 𝑞𝑗𝑡 = 𝑞𝑡 and 𝑚𝑖𝑡 = 𝑚𝑗𝑡 = 𝑚𝑡  for all 𝑖 ≠ 𝑗 , we 

obtain the following result: 

Proposition 1: The symmetric feedback (Markovian) Nash equilibrium strategies of the game 

are: 

𝑞𝑡
∗ =

𝑎−𝑐

𝑏(𝑁+1)
+

1

𝑏(𝑁+1)
𝑥𝑡       and       𝑚𝑡

∗ =
𝛼

𝛾𝑚
(𝐵 + 2𝐷𝑥𝑡)                 (5) 

where  𝐷 =
(2𝛿+𝜌)±√(2𝛿+𝜌)2−

8𝛼2

𝛾𝑚𝑏(𝑁+1)2

4𝛼2

𝛾𝑚

   and   𝐵 = −
2(𝑎−𝑐)

𝑏(𝑁+1)2 ×
1

2𝛼2

𝛾𝑚
𝐷−𝛿−𝜌

   . 
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Proof: see the appendix 

Differentiating (5) with respect to time and using the dynamic constraint (1) we obtain a system 

consisting of three linear differential equations. It is the main tool for the analysis of optimal 

solutions of the model: 

�̇�𝑡 =
1

𝑏(𝑁+1)
�̇�𝑡 ,                                        (6) 

�̇�𝑡 =
2𝛼𝐷

𝛾𝑚
�̇�𝑡  ,                                       (7) 

�̇�𝑡 = 𝛼𝑚𝑡 − 𝛿𝑥𝑡  .                                   (8) 

According to the system (6-8), both trajectories of 𝑞𝑡
∗  and  𝑚𝑡

∗ will converge to a steady state 

if the state trajectory 𝑥𝑡
∗ converges. Conditions for convergence are stated in the following 

proposition: 

Proposition 2: If 𝛾𝑚 >
2𝛼2

𝛿(𝛿+𝜌)𝑏(𝑁+1)
 , then the feedback (Markovian) Nash equilibrium 

strategies (5) will converge to the unique steady state (𝑞∞, 𝑚∞)  with 𝑞∞ =
𝑎−𝑐

𝑏(𝑁+1)
+

1

𝑏(𝑁+1)

𝛼

𝛿
𝑚∞ , 𝑥∞ =

𝛼

𝛿
𝑚∞   and  𝑚∞ =

𝛼𝛿𝐵

𝛾𝑚𝛿−2𝛼2𝐷
  . 

 

Proof: see the Appendix 

A phase diagram depicting the relationship between 𝑥𝑡 and 𝑚𝑡 is provided in figure 2. The 

relevant phase space is the set{(𝑥𝑡 , 𝑚𝑡)|𝑥𝑡 ≥ 0,   0 ≤ 𝑚𝑡 ≤ 𝑁 − 1}. The solid line is𝑥 = 𝛼

𝛿
𝑚, 

which is the locus of all points at which �̇� = �̇� = �̇�. It is called the (�̇� = 0)-isocline. The 

isocline divides the phase space into two regions each of which is characterized by a unique 

direction of the flow determined by (7) and (8). These direction are indicated in the figure by 

arrows. Given that �̇� = 0 only if �̇� = 0, the isocline is the set of all the fixed points (steady 

states) of the system. For any admissible set of parameters (𝑎, 𝑏, 𝑐, 𝛼, 𝛿, 𝛾𝑚, 𝑁, 𝜌) and the 

initial state 𝑥0 = 0 there exists  a unique solution of the system (6-8) which converges to one 

of the steady states on the isocline.  In other words, for a given set of parameters, the time path 

{𝑚𝑡}𝑡=0
∞  will start at a value 𝑚0 = 𝛼

𝛾𝑚
𝐵 which is greater than 0 and less than 𝑁 − 1. As shown 

in the phase diagram, the value of 𝑚𝑡 will increase over time and converge to 𝑚∞ as 𝑡 → ∞. 

As shown in the phase diagram, trajectory is a straight path according to the relationship 𝑚𝑡
∗ =

𝛼

𝛾𝑚
 (𝐵+2𝐷𝑥𝑡)  . 
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Figure 2. Phase Diagram – the Number of Connections of a Firm Increases over Time, 

Converging to the Steady State 

 

Substituting the optimal number of links in (5) into the system dynamics we obtain the linear, 

autonomous initial value problem for the state trajectory, 

�̇�𝑡 =
2𝛼2

𝛾𝑚
𝐵 + (2𝛼2

𝛾𝑚
𝐷 − 𝛿) 𝑥𝑡, 𝑥0 = 0,                           (9) 

which can be solved explicitly. This yields: 

𝑥𝑡 =
𝛼2𝐵

𝛾𝑚𝛿−2𝛼2𝐷
[1 − 𝑒

(2𝛼2𝐷
𝛾𝑚

−𝛿)𝑡
] .                              (10) 

Equation (10) confirms that the state variable 𝑥 is increasing over time and converging to the 

positive steady state value 𝑥∞ =
𝛼2𝐵

𝛾𝑚𝛿−2𝛼2𝐷
. 

Observe that it must be 0 ≤ 𝑚∞ ≤ 𝑁 − 1 . Nonnegativity is guaranteed by the stability 

condition 𝐷 < 𝛿𝛾𝑚
2𝛼2   discussed in the appendix, whereas 𝑚∞ is no larger than 𝑁 − 1 only for 

sufficiently low levels of market size 𝑎 − 𝑐, precisely 

𝑚∞ ≤ 𝑁 − 1 if     𝑎 − 𝑐 ≤
𝑏𝛾𝑚(𝑁−1)(𝑁+1)2

4𝛼𝛿
(−𝜌 + √(2𝛿 + 𝜌)2 − 8𝛼2

𝛾𝑚𝑏(𝑁+1)2) ≡ �̅�.   (11) 

Condition (11) leads to following result: 

Proposition 3: Let us assume that condition (11) holds then, the higher the market size the 

denser the network that oligopolistic firms will form. In the long run equilibrium, firms will 

form a complete network only if 𝑎 − 𝑐 = �̅�. 

Proof: Differentiating 𝑚∞ with respect to 𝑎 − 𝑐 we obtain that 𝜕𝑚∞
𝜕(𝑎−𝑐)

≥ 0. From condition 

𝑥𝑡 

𝑚𝑡 

�̇� = 0 

𝑚0 𝑁 − 1 
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(11) It follows that 𝑚∞
∗  increases with the market size, converging to the complete network 

when 𝑎 − 𝑐 = �̅�. 

According to proposition 3, oligopolistic firms tend to form denser networks as the market size 

converge to its threshold level �̅�. 

It is important to stress that �̅� increases with the number of firms N and the cost of links 𝛾𝑚 

whereas decreases with the spillover rate 𝛼. In other words, for a given market size,  we will 

observe a lower network degree in more competitive markets characterised by a lower level of 

spillovers and higher costs of link formation. The economic intuition behind this result is that 

increasing competition lowers the efficiency that each firm can absorb from its partners 

(precisely, 𝑥∞ decreases with N), inducing firms to form smaller networks. Obviously, this 

effect is boosted by decreasing spillover rate and increasing cost of cooperative links. 

 

3. Conclusion 

We develop a Cournot-type differential game to analyse the dynamic of firm connections 

within a network.  The state variable is represented by the degree of cost reduction generated 

by collaboration, and it evolves according to the number of connections and the rate of spillover. 

Networks tend to become denser over time, and the number of connections of each network 

firm follows a growing path which converge to a steady state. Larger market size makes 

collaboration more profitable prompting firms to increase connections. Similar results are 

obtained with an increasing spillover rate.  

Based on our results, we expect denser networks in growing markets and when firms can 

benefit significantly from sharing information and expertise (high spillovers). Tomasiello et al. 

(2016) confirm this result for high tech industries such as Pharmaceutical, Computer Software 

and electronic component. 

As a further development of the model one could describe the evolution of the state variable x 

as a stochastic process of the type 𝑑𝑥𝑖𝑡 = (𝛼𝑚𝑖𝑡 − 𝛿𝑥𝑖𝑡)𝑑𝑡 + 𝜎𝑥𝑖𝑡𝑑𝑊𝑖𝑡 where 𝑊𝑖𝑡 denotes 

the realization of the Wiener process at time t, whereas 𝜎 > 0 measures the influence of the 

Wiener process on the dynamic of the state variable x. According to this formulation, each firm 

is assumed to take into account the relative volatility that its choice might transmit to the system. 

The higher is the effort in increasing efficiency by cooperative links, the more uncertainty will 

enter the system. 
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Notes 

Note 1. We consider 2010 as the starting date since in that year the Italian Government 

introduced the law on networks. 

Note 2. Provided by the Italian Chamber of Commerce. 

 

Appendix 

Proposition 1 

The game at hand takes a linear quadratic form, with the following Bellman equation: 

𝜌𝑉𝑖𝑡 = max
𝑞𝑖𝑡,𝑚𝑖𝑡

{[𝑎 − 𝑏 ∑ 𝑞𝑖𝑡
𝑁
𝑗=1 ]𝑞𝑖𝑡 − (𝑐 − 𝑥𝑖𝑡)𝑞𝑖𝑡 − 𝛾𝑚

𝑚𝑖𝑡
2

2
+ 𝑑𝑉𝑖𝑡

𝑑𝑥𝑖𝑡
[𝛼𝑚𝑖𝑡 − 𝛿𝑥𝑖𝑡]},     (20) 

and therefore, we set 𝑉𝑖𝑡 = 𝐴 + 𝐵𝑥𝑖𝑡 + 𝐷𝑥𝑖𝑡
2  .The first order conditions are : 

𝑎 − 2𝑏𝑞𝑖𝑡 − 𝑏 ∑ 𝑞𝑗𝑡 − 𝑐 − 𝑥𝑖𝑡 = 0𝑁
𝑗≠𝑖  ,                        (21) 

 

      −𝛾𝑚𝑚𝑖𝑡 + 𝛼(𝐵 + 2𝐷𝑥𝑖𝑡) = 0 ,                       (22) 

 

whereby, imposing symmetry, the firm's Markov strategies are 

 

               𝑞𝑡
∗ =

𝑎−𝑐

𝑏(𝑁+1)
+

1

𝑏(𝑁+1)
𝑥𝑡 ,                            (23) 

 

                   𝑚𝑡
∗ =

𝛼

𝛾𝑚
(𝐵 + 2𝐷𝑥𝑡).                                (24) 

By substituting conditions (23) and (24) into (20) and collecting terms with equal power of 𝑥𝑡 

we see that, in order for (20) to be satisfied, it must hold that 

                     
(𝑎−𝑐)2

𝑏(𝑁+1)2 +
𝛼2

2𝛾𝑚
𝐵2 − 𝜌𝐴 = 0 ,                        (25) 

                      
2(𝑎−𝑐)

𝑏(𝑁+1)2 +
2𝛼2

𝛾𝑚
𝐷2 − 𝑠𝛿𝐷 − 𝜌𝐷 = 0 ,                 (26) 

                     
1

𝑏(𝑁+1)2 +
2𝛼2

𝛾𝑚
𝐵𝐷 − 𝐵(𝛿 + 𝜌) = 0 .                  (27) 

This yields: 



 Research in Applied Economics 

ISSN 1948-5433 

2024, Vol. 16, No. 1 

                                                  http://rae.macrothink.org 38 

              𝐴 = {
(𝑎−𝑐)2

𝑏(𝑁+1)2 +
2𝛼2

𝛾𝑚
[−

2(𝑎−𝑐)

𝑏(𝑁+1)2 ×
1

2𝛼2

𝛾𝑚
𝐷−𝛿−𝜌

]

2

}
1

𝜌
 ,              (28) 

              𝐵 = −
2(𝑎−𝑐)

𝑏(𝑁+1)2 ×
1

2𝛼2

𝛾𝑚
𝐷−𝛿−𝜌

 ,                               (29) 

                 𝐷 =
(2𝛿+𝜌)±√(2𝛿+𝜌)2−

8𝛼2

𝛾𝑚𝑏(𝑁+1)2

4𝛼2

𝛾𝑚

 .                        (30) 

Proposition 2 

Differentiating (23) and (24) w.r.t. time we obtain the following system of linear differential 

equations: 

�̇�𝑡 =
1

𝑏(𝑁+1)
�̇�𝑡 ,                                (31) 

�̇�𝑡 =
2𝛼𝐷

𝛾𝑚
�̇�𝑡  ,                                 (32) 

�̇�𝑡 = 𝛼𝑚𝑡 − 𝛿𝑥𝑡  .                              (33) 

This system describes the dynamics of both control and state variables of the model which 

converge to a steady state (𝑚∞, 𝑞∞, 𝑥∞) only if 𝑥𝑡 converges to a fixed point. Thus, let us 

rewrite equation (33) as 

�̇�𝑡 =
𝛼2

𝛾𝑚
𝐵 + (

2𝛼2

𝛾𝑚
𝐷 − 𝛿) 𝑥𝑡,                          (34) 

where we have used 𝑚𝑡
∗ =

𝛼

𝛾𝑚
(𝐵 + 2𝐷𝑥𝑡). 

Observe that the dynamic described by equation (34) converges to a positive fixed point 𝑥∞ 

only if 𝐷 < 𝛿𝛾𝑚
2𝛼2 ≡�̅�  and 𝐵 > 0 . It is straightforward to show that the positivity of   is 

guaranteed by taking the smaller root in (30) i.e. 𝐷 =
2𝛿+𝜌−√(2𝛿+𝜌)2−

8𝛼2

𝛾𝑚𝑏(𝑁+1)2

4𝛼2𝛾𝑚
−1  where we assume 

a positive discriminant. Moreover, it is easy to show that 𝐷 < �̅� if 𝛾𝑚 > 2𝛼2

𝛿(𝛿+𝜌)𝑏(𝑁+1)2 which 

is a reasonable condition for a sufficiently high number of firms. 
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