Freeze Dried Acerola (Malpighia emarginata) Pulp and Pomace: Physicochemical Attributes, Phytochemical Content and Stability during Storage
Abstract
In this study, acerola pulp and acerola pomace were freeze dried with and without gum Arabic (GA) and analyzed in regard to their physicochemical attributes, bioactive content, and phytochemical stability (total phenolic content, ascorbic acid, total monomeric anthocyanins and antioxidant activity), during storage at 4 oC and 25 oC. The freeze dried products were highly porous and had low water activity (0.273 to 0.300). Freeze dried acerola pulp with GA were the most soluble samples (64.1% to 73.7 %). The addition of GA to freeze dried acerola pomace increased samples hygroscopicity from 4.5% to 11.1%. High ascorbic acid retention in freeze dried acerola pulp was observed for all samples (65.2 % at 25 °C and 88.9% at 4 °C). It was observed that freeze dried acerola pomace showed increased antioxidant activity during storage (101.9% at 4 °C and 135.9% at 25 °C). Our results demonstrate the potential of freeze dried acerola pulp and pomace as novel food ingredients with concentrated phytochemical content and desirable physicochemical attributes.
Full Text:
PDFReferences
Agudelo, C., Barros, L., Santos-buelga, C., Martínez-navarrete, N., & Ferreira, I. C. F. R. (2017). LWT - Food Science and Technology Phytochemical content and antioxidant activity of grapefruit ( Star Ruby ): A comparison between fresh freeze-dried fruits and different powder formulations. LWT - Food Science and Technology, 80, 106–112. https://doi.org/10.1016/j.lwt.2017.02.006
Aguilar, K., Garvín, A., Ibarz, A., & Augusto, P. E. D. (2017). Ascorbic acid stability in fruit juices during thermosonication. Ultrasonics Sonochemistry, 37, 375–381. https://doi.org/10.1016/j.ultsonch.2017.01.029
Araujo-Díaz, S. B., Leyva-Porras, C., Aguirre-Manuelos, P., Álvarez-Salas, C., & Saavedra-Leos, Z. (2017). Evaluation of the physical properties and conservation of the antioxidants content , employing inulin and maltodextrin in the spray drying of blueberry juice, 167, 317–325. https://doi.org/10.1016/j.carbpol.2017.03.065
Araújo, A. D. A., Coelho, R. M. D., Fontes, C. P. M. L., Silva, A. R. A., Da Costa, J. M. C., & Rodrigues, S. (2015). Production and spouted bed drying of acerola juice containing oligosaccharides. Food and Bioproducts Processing, 94(August), 565–571. https://doi.org/10.1016/j.fbp.2014.08.005
Assis, S. A. de, Fernandes, F. P., Martins, A. B. G., & Oliveira, O. M. M. de F. (2008). Acerola : importance , culture conditions , production and biochemical aspects, 63(2), 93–101. https://doi.org/10.1051/fruits
Aydin, E., & Gocmen, D. (2015). The influences of drying method and metabisulfite pre-treatment onthe color, functional properties and phenolic acids contents and bioaccessibility of pumpkin flour. LWT - Food Science and Technology, 60(1), 385–392. https://doi.org/10.1016/j.lwt.2014.08.025
Azevêdo, J. C. S., Fujita, A., de Oliveira, E. L., Genovese, M. I., & Correia, R. T. P. (2014). Dried camu-camu (Myrciaria dubia H.B.K. McVaugh) industrial residue: A bioactive-rich Amazonian powder with functional attributes. Food Research International, 62, 934–940. https://doi.org/10.1016/j.foodres.2014.05.018
Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science and Emerging Technologies, 6(4), 420–428. https://doi.org/10.1016/j.ifset.2005.05.003
Castro-López, C., Sánchez-Alejo, E. J., Saucedo-Pompa, S., Rojas, R., Aranda-Ruiz, J., & Martínez-Avila, G. C. G. (2016). Fluctuations in phenolic content, ascorbic acid and total carotenoids and antioxidant activity of fruit beverages during storage. Heliyon, 2(9). https://doi.org/10.1016/j.heliyon.2016.e00152
Chen, Y., & Martynenko, A. (2017). LWT - Food Science and Technology Storage stability of cranberry puree products processed with hydrothermodynamic ( HTD ) technology, 79. https://doi.org/10.1016/j.lwt.2016.10.060
Conceição, M. C., Fernandes, T. N., & de Resende, J. V. (2016). Stability and microstructure of freeze-dried guava pulp (Psidium guajava L.) with added sucrose and pectin. Journal of Food Science and Technology, 53(6), 2654–2663. https://doi.org/10.1007/s13197-016-2237-5
Deng, Y., Yang, G., Yue, J., Qian, B., Liu, Z., Wang, D., … Zhao, Y. (2014). Influences of ripening stages and extracting solvents on the polyphenolic compounds, antimicrobial and antioxidant activities of blueberry leaf extracts. Food Control, 38(1), 184–191. https://doi.org/10.1016/j.foodcont.2013.10.023
Duarte-Almeida J.M., Santos R. J., Genovese M. I., & Lajolo F.M. (2006). Avaliação Da Atividade Antioxidante Utilizando Sistema Β-Caroteno/Ácido Linoléico E Método De Seqüestro De Radicais Dpph•. Ciênc. Tecnol. Aliment., 26(2), 446–452. https://doi.org/10.1590/S0101-20612006000200031
Ezhilarasi, P. N., Indrani, D., Jena, B. S., & Anandharamakrishnan, C. (2013). Freeze drying technique for microencapsulation of Garcinia fruit extract and its effect on bread quality. Journal of Food Engineering, 117(4), 513–520. https://doi.org/10.1016/j.jfoodeng.2013.01.009
Fujita, A., Borges, K., Correia, R., Franco, B. D. G. de M., & Genovese, M. I. (2013). Impact of spouted bed drying on bioactive compounds, antimicrobial and antioxidant activities of commercial frozen pulp of camu-camu (Myrciaria dubia Mc. Vaugh). Food Research International, 54(1), 495–500. https://doi.org/10.1016/j.foodres.2013.07.025
Furlaneto, F. P. B., & Nasser, M. D. (2015). Panorama da cultura da acerola no estado de São Paulo. Pesquisa E Tecnologia, 12(1), 1–6. https://doi.org/10.1017/CBO9781107415324.004
Giusti, M. & Wrolstad, R. (2005). Characterization and measurement of anthocyanins by UV- Visible spectroscopy. Current Protocols in Food Analytical Chemistry, (August 2016), 19–31. https://doi.org/10.1002/0471142913.faf0102s00
GEA Niro Research Laboratory (2017). GEA Niro analytical methods. [Online] Available: http://www.niro.com/methods. (August 1, 2017).
Guillon, F., & Champ, M. (2000). Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Research International, 33(3–4), 233–245. https://doi.org/10.1016/S0963-9969(00)00038-7
Gurak, P. D., De Bona, G. S., Tessaro, I. C., & Marczak, L. D. F. (2014). Jaboticaba pomace powder obtained as a co-product of juice extraction: A comparative study of powder obtained from peel and whole fruit. Food Research International, 62, 786–792. https://doi.org/10.1016/j.foodres.2014.04.042
Harnkarnsujarit, N., Kawai, K., Watanabe, M., & Suzuki, T. (2016). Effects of freezing on microstructure and rehydration properties of freeze-dried soybean curd. Journal of Food Engineering, 184, 10–20. https://doi.org/10.1016/j.jfoodeng.2016.03.014
Jaeschke, D. P., Marczak, L. D. F., & Mercali, G. D. (2016). Evaluation of non-thermal effects of electricity on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating. Food Chemistry, 199, 128–134. https://doi.org/10.1016/j.foodchem.2015.11.117
Jaya, S., & Das, H. (2004). Effect of maltodextrin, glycerol monostearate and tricalcium phosphate on vacuum dried mango powder properties. Journal of Food Engineering, 63(2), 125–134. https://doi.org/10.1016/S0260-8774(03)00135-3
Karam, M. C., Petit, J., Zimmer, D., Baudelaire Djantou, E., & Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 188, 32–49. https://doi.org/10.1016/j.jfoodeng.2016.05.001
Khazaei, K. M., Jafari, S. M., Ghorbani, M., & Kakhki, A. H. (2014). Application of maltodextrin and gum Arabic in microencapsulation of saffron petal ’ s anthocyanins and evaluating their storage stability and color. Carbohydrate Polymers, 105, 57–62. https://doi.org/10.1016/j.carbpol.2014.01.042
Kuck, L. S., & Noreña, C. P. Z. (2016). Microencapsulation of grape ( Vitis labrusca var . Bordo ) skin phenolic extract using gum Arabic , polydextrose , and partially hydrolyzed guar gum as encapsulating agents, 194, 569–576. https://doi.org/10.1016/j.foodchem.2015.08.066
López-Marcos, M. C., Bailina, C., Viuda-Martos, M., Pérez-Alvarez, J. A., & Fernández-López, J. (2015). Properties of Dietary Fibers from Agroindustrial Coproducts as Source for Fiber-Enriched Foods. Food and Bioprocess Technology, 8(12), 2400–2408. https://doi.org/10.1007/s11947-015-1591-z
Mukherjee, P. K., Nema, N. K., Maity, N., & Sarkar, B. K. (2013). Phytochemical and therapeutic potential of cucumber. Fitoterapia, 84(1), 227–236. https://doi.org/10.1016/j.fitote.2012.10.003
Nie, S. P., Wang, C., Cui, S. W., Wang, Q., Xie, M. Y., & Phillips, G. O. (2013). A further amendment to the classical core structure of gum arabic (Acacia senegal). Food Hydrocolloids, 31(1), 42–48. https://doi.org/10.1016/j.foodhyd.2012.09.014
Nóbrega, E. M., Oliveira, E. L., Genovese, M. I., & Correia, R. T. P. (2015). The impact of hot air drying on the physical-chemical characteristics, bioactive compounds and antioxidant activity of acerola (Malphigia emarginata) residue. Journal of Food Processing and Preservation, 39(2), 131–141. https://doi.org/10.1111/jfpp.12213
Nora, C. D., Müller, C. D. R., de Bona, G. S., Rios, A. de O., Hertz, P. F., Jablonski, A., … Flôres, S. H. (2014). Effect of processing on the stability of bioactive compounds from red guava (Psidium cattleyanum Sabine) and guabiju (Myrcianthes pungens). Journal of Food Composition and Analysis, 34(1), 18–25. https://doi.org/10.1016/j.jfca.2014.01.006
Oliveira, D. M., Lima, C. G., Clemente, E., Afonso, M. R. A., & Costa, J. M. C. Da. (2015). Stability of bioactive compounds and quality parameters of grugru palm powder (Acrocomia Aculeata) in different drying conditions. Journal of Food Quality, 38(2), 94–102. https://doi.org/10.1111/jfq.12126
Oliveira, R. G. De, Godoy, H. T., & Prado, M. A. (2010). Otimização de metodologia colorimétrica para a determinação de ácido ascórbico em geleias de frutas. Ciência E Tecnologia de Alimentos, 30(1), 244–249. https://doi.org/10.1590/S0101-20612010000100036
Pasrija, D., Ezhilarasi, P. N., Indrani, D., & Anandharamakrishnan, C. (2015). LWT - Food Science and Technology Microencapsulation of green tea polyphenols and its effect on incorporated bread quality. LWT - Food Science and Technology, 64(1), 289–296. https://doi.org/10.1016/j.lwt.2015.05.054
Paz, M., Gúllon, P., Barroso, M. F., Carvalho, A. P., Domingues, V. F., Gomes, A. M., … Delerue-Matos, C. (2015). Brazilian fruit pulps as functional foods and additives: Evaluation of bioactive compounds. Food Chemistry, 172, 462–468. https://doi.org/10.1016/j.foodchem.2014.09.102
Risch, S. J., & Reineccius, G. a. (1993). SYMPOSIUM Encapsulation and Controlled Release of Food Ingredients Science by Design, 1993–1996.
Sampaio, R. M., Neto, J. P. M., Perez, V. H., Marcos, S. K., Boizan, M. A., & Da Silva, L. R. (2016). Mathematical Modeling of Drying Kinetics of Persimmon Fruits (Diospyros kaki cv. Fuyu). Journal of Food Processing and Preservation, 0(Ibge 2012), n/a-n/a. https://doi.org/10.1111/jfpp.12789
Sancho, S. D. O., Da Silva, A. R. A., Dantas, A. N. D. S., Magalhaes, T. A., Lopes, G. S., Rodrigues, S., … Silva, M. G. D. V. (2015). Characterization of the industrial residues of seven fruits and prospection of their potential application as food supplements. Journal of Chemistry, 2015. https://doi.org/10.1155/2015/264284
Shah, S. W. A., Jahangir, M., Qaisar, M., Khan, S. A., Mahmood, T., Saeed, M., … Liaquat, M. (2015). Storage stability of kinnow fruit (Citrus reticulata) as affected by CMC and guar gum-based silver nanoparticle coatings. Molecules, 20(12), 22645–22661. https://doi.org/10.3390/molecules201219870
Silva, P. B., Duarte, C. R., & Barrozo, M. A. S. (2016). Dehydration of acerola (Malpighia emarginata D.C.) residue in a new designed rotary dryer: Effect of process variables on main bioactive compounds. Food and Bioproducts Processing, 98, 62–70. https://doi.org/10.1016/j.fbp.2015.12.008
Soquetta, M. B., Stefanello, F. S., Huerta, K. D. M., Monteiro, S. S., Da Rosa, C. S., & Terra, N. N. (2016). Characterization of physiochemical and microbiological properties, and bioactive compounds, of flour made from the skin and bagasse of kiwi fruit (Actinidia deliciosa). Food Chemistry, 199, 471–478. https://doi.org/10.1016/j.foodchem.2015.12.022
Souza, V. B., Thomazini, M., Balieiro, J. C. D. C., & Fávaro-Trindade, C. S. (2015). Effect of spray drying on the physicochemical properties and color stability of the powdered pigment obtained from vinification byproducts of the Bordo grape (Vitis labrusca). Food and Bioproducts Processing, 93(November), 39–50. https://doi.org/10.1016/j.fbp.2013.11.001
Tonon, R. V., Brabet, C., & Hubinger, M. D. (2010). Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 43(3), 907–914. https://doi.org/10.1016/j.foodres.2009.12.013
Tonon, R. V, Baroni, A. F., Brabet, C., Gibert, O., Pallet, D., & Hubinger, M. D. (2009). Water sorption and glass transition temperature of spray dried açai ( Euterpe oleracea Mart .) juice. Journal of Food Engineering, 94(3–4), 215–221. https://doi.org/10.1016/j.jfoodeng.2009.03.009
Weber, F., Boch, K., & Schieber, A. (2017). Influence of copigmentation on the stability of spray dried anthocyanins from blackberry. LWT - Food Science and Technology, 75, 72–77. https://doi.org/10.1016/j.lwt.2016.08.042
DOI: https://doi.org/10.5296/jfi.v1i1.11795
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Journal of Food Industry
Journal of Food Industry (ISSN: 1948-545X) Email: jfi@macrothink.org
Copyright © Macrothink Institute
'Macrothink Institute' is a trademark of Macrothink Institute, Inc.
To make sure that you can receive messages from us, please add the 'macrothink.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.